
18.S997 Notes 

The Elekes-Sharir Approach to the Distinct Distance Problem 

Today’s the last background lecture in incidence geometry. We’ll discuss one of the latest methods to 
approaching the distinct distance problem, which has a cool connection to incidence geometry. 

Before going into that, let’s review how we were thinking about the distinct distance problem. Suppose 
we have N points and t « N distances. Draw tN circles around each point, and consider the circles as arcs. 
We tried this approach before, but never used the fact that the radii at each of the points must be the same. 

We make some new definitions to take advantage of that. Let P ⊂ R2 be the set of points and d(P ) the 
set of nonzero distances. Let Q(P ) = {(p1, q1, p2, q2) ∈ P 4 : |p1 − q1| = |p2 − q2|  We’d expect |Q(P )|= 0}. 
to be large. 

Lemma 1. |d(P )| |Q(P )| ≥ (N2 − N)2 2 N4 . 

2Proof. Let d(P ) = {d1, . . . , ds} where s = |d(P )|. We can just count nj = {(p, q) ∈ p : |p − q| = dj } 
and j nj = N2 − N . If we pick the distance first and then choose two pairs equalling that distance,     s 
we get |Q(P )| = 2 Then we just use Cauchy-Schwarz: N2 − N = · 1 ≤ n2 

 1/2 
s1/2 = j nj . j=1 nj j

|Q(P )|1/2 |d(P )|1/2, as desired. 

This is not at all surprising: If there are few distances, then there should be a lot of quadruples. So we’d 
also like to count these quadruples in another way, and figuring out a way to do this was their key insight. 

Let G be the group of orientation-preserving rigid motions of the plane. 

Lemma 2. |p1 − q1| = |p2 − q2|  and g(q1) = q2.= 0 iff ∃!g ∈ G with g(p1) = p2 

That got people thinking about which rigid motions take p1 to p2. Let Sp1,p2 = {g ∈ G : g(p1) = p2}. 
This is a 1-dimensional curve in G, which is a 3-dimensional Lie group. 

Lemma 3. Assume p1  Then |p1 − q1| = |p2 − q2| iff |Sp1,p2 | = 1, and |p1 − q1| = |p2 − q2| iff= q1. ∩ Sq1,q2 

|Sp1 ,p2 ∩ Sq1,q2 | = 0. 

So we can look at the incidence geometry of these curves in G. If a point lies on two curves, it corresponds 
to two quadruples, and if a point lies on three curves, it corresponds to six quadruples. Let G=k := {g ∈ G : 
g lies in exactly k curves of S}. � 

Let E : Q(P ) → g be given by Lemma 3. Then the image of E is contained in We have k≥2 G=k.   
kE−1(g) = 2 , since we can take the quadruples in either order. Therefore, we have 2   

kLemma 4. |Q(P )| =
 N |G=k| 2 .k=2 2

We usually calculated things with Gk = {g ∈ G : g lies in ≥ k curves}. So writing in terms of these, we 
have 

Lemma 5. Q(P ) ∼
 N |Gk| k.k=2 
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Proof. We have 

k |Q(P )| = |G=k| 2 
2 

N 
= [|Gk| − |Gk+1|](k2 − k) 

k=2  
= |Gl| [(l2 − l) − ((l − 1)2 − (l − 1))] 

l  
∼ l |Gl| . 

l 

We also have this other characterization of Gk: 

Lemma 6. Gk = {g ∈ G : |gP ∩ P | ≥ k}. 

This is sort of a generalization of symmetries, where we’d require gP = P . So we can think of these as 
partial symmetries. 

Example. Suppose our set of points is an s × s square grid with N 

2 

pppp 2 . Then |Gs2 | = 4. What about things 
1p? Well, it takes a while to explain, but |Gk| ∼ N3k−2 for all 2 ≤ k ≤ 

= s

like N .pG 1 s10 10 

That this is the best you can do was a conjecture: 

Conjecture (ES1). If P ⊂ R2 with |P | = N and 2 ≤ k ≤ n, then |Gk| ; N3k−2 . 

ppp

This has since been proven, and we’ll prove it in this class using the polynomial method. 
N N 

N3k−1Let’s see the consequences. |Q(P )| ≤ |Gk| k ; ; N3 log N . Then |d(P )| 2k=2 k=2 
23 | |N / Q(P ) N/ log N We’ll prove this whole chain of implications using the polynomial method. We. 

pp

see that we’ve claimed that the conjecture itself is sharp for the square grid, so we know that the square 
grid indeed does have that many quadruples. But we could have lost some at the last step because we used√ 
Cauchy-Schwarz, and indeed, we checked earlier that there are N/ log N distinct distances in the large 
square grid. 

Let’s get a better feel for these rigid motions. We first have the translations T , which are congruent to 
the plane R2 . 

Lemma 7. |T ∩ Gk| ; N3k−2 . 

≤ N3 because ∀ 
E−1(g) 

⊂ Q(P ) = {(p1, q1, p2, q2) ∈ P 4 such that p1−q1 

1, q1, p2, there is at most one choice of p2. Then define E : QT → T 
Proof. Consider the number of translation quadruples QT = 
p2 −q2 = 0}.
 
similar to before, and if g ∈ Gk,
 

Then #QT 

So |QT | ≥ |Gk ∩ T | · 2 k 
2∼ k2 , and we’re done.. 

Now we’d like to “straighten” G' := G/T . There’s a way to do this to make it correspond to the incidence 
geometry of points and lines. G' is a rotation around a fixed point (x, y) ∈ R2 by angle θ ∈ (0, 2π). Then 
we define ρ : G → R3 by ρ(x, y, θ) = (x, y, cot θ/2). 

Proposition. ρ(Spq ∩ G') is a line ipq. 

Proof. Indeed, if we rotate from p to q, the point of rotation must be on the perpendicular bisector of p and 
q. It’s just trigonometry from here. 

In fact, we have the following: 

p2−q2 q1−p1 1 p+qProposition. Let v = , be a vector perpendicular to p − q with length |p − q| and a = .2 2 2 2 
Then ρ(Spq ∩ G') is a line parameterized by ipq : t  → (a + tv, t). 
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Let L = {ipq}p,q∈P , N2 lines. Then |G ' | is the number of points in ≥ k lines of L. Remember that the k 
incidence geometry depended on whether they were all in the plane. 

Lemma 8. If q = r then ipq and iqr are skew. 

Proof. Spq = {g ∈ G : g(p) = q}, so Spq ∩ Spr = ∅. This shows that ipq ∩ ipr = ∅, so we also have to show 
they aren’t parallel. The “slope” ((dx/dz, dy/dz)) of ipq is v(p, q) and these slopes are different. 

We also realized that there was a problem if too many lines lay in some regulus. We won’t prove this in 
class today but defer this proof to a while later, but there are ≤ N lines of L in any degree 2 surface. 

Conjecture (ES2A). If L is a set of L lines with at most L1/2 in any plane or degree 2 surface, then 
|P2| ; L3/2 . 

Conjecture (ES2B). If L is a set of L lines with at most L1/2 in any plane and 3 ≤ k ≤ L1/2 , then 
|Pk| ; L3/2k−2 . 

Finally, we saw another log-log graph of the bounds we had. We had the S-T bound for any L lines that 
was piecewise linear with two regions, from 2 to L1/2 and L1/2 to L. Then if we assume the number of lines 
in any plane or degree 2 surface is small, then we lower the first line. 

This finishes our background on incidence geometry. In the next session, we’ll pick up with the polynomial 
method. 
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