
ALGEBRAIC STRUCTURE AND DEGREE REDUCTION

Let S ⊂ n
F . We define deg(S) to be the minimal degree of a non-zero polynomial

that vanishes on S. We have seen that for a finite set S, deg(S) ≤ n|S|1/n. In fact,
we can say something a little sharper. Let V (d) be the vector space of polynomials
of degree ≤ d in n variables. It has dimension d+n . If N < dimV (d), then

n
deg(S) ≤ d. This bound is sharp for generic sets

(

S.

)

(should we prove it?...) If
deg(S) is significantly smaller than |S|1/n, then it means that S has more algebraic
structure than a generic set.

We are going to explore the connection between combinatorial properties of a set
S and its algebraic structure. We will see that interesting examples in the kind of
incidence geometry questions we have been studying need to have algebraic structure.
Once we prove that a set has some algebraic structure, it makes sense to try to use
that structure to study the set.

As a warmup, we consider a set of L lines in 3
F . It’s easy to find a degree L

polynomial that vanishes on the L lines, but in fact we can do better.

Proposition 0.1. For any L lines in 3 1/2
F , there is a polynomial of degree ≤ 3L

that vanishes on each line.

Proof. Let V (d) be the space of polynomials in three variables of degree ≤ d. The
dimension of V (d) is

(

d+3
)

≥ (1/6)d3. We will choose the degree d later. We pick
3

d + 1 points on each of the L lines. If dimV (d) > (d + 1)L, we can find a non-zero
polynomial of degree ≤ d that vanishes on all the points. Since it vanishes on d + 1
points on each line, it will also vanish on all the lines. Therefore, we can find such a
polynomial as long as (1/6)d3 > (d + 1)L. �

1. Degree reduction

We have seen that the union of any L lines in 3
F has degree . L1/2. Now we

consider arrangements of lines with lots of incidences and prove that the the union
has much lower degree. This process is called degree reduction.

Proposition 1.1. Let X be a union of L lines in 3
F . Suppose that each line contains

≥ A intersection points with other lines. Then the degree of X is . L/A.

This proposition holds automatically if A ≤ L1/2, and it becomes interesting when
A is significantly larger than L1/2. For example, suppose that we have L lines in 3

R

with much more than L3/2 intersection points. If there are approximately the same
number of intersection points on each line, then each line would contain much more
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than L1/2 intersection points. Then the proposition would imply that the union of
the lines has degree much smaller than L1/2. The union has some special polynomial
structure, and it’s reasonable to try to use the polynomial structure to study the
lines.

The first proof of the joints theorem used degree reduction. I think of it as one of
the main steps/ideas in the polynomial method. This proposition is the first step in
the proof of the Elekes-Sharir conjecture on the number of intersection points of a
set of lines in 3

R . I also think of it as philosophically important in explaining why
polynomials are relevant. The combinatorial structure of the problem forces the set
of points or lines to have a special algebraic structure - and then it makes sense to use
this structure to study the problem. The proof of degree reduction is similar to the
proof of finite field Nikodym or other fundamental results. By counting dimensions,
we find a low degree polynomial that vanishes on some points of X. Then by using
the vanishing lemma, we see that it also has to vanish at other points of X, and
eventually we prove that it vanishes on all of X.

We begin with heuristics - with an informal argument that describes the main idea
of the proof. Let L be our set of lines. Let d be a degree that we will choose later.
We randomly choose a subset L0 ⊂ L of size (1/10)d2. By the last proposition, we
can find a non-zero degree d polynomial P that vanishes on every line of L0.

Now the key point is that there are many incidences between the lines of L0 and
the other lines of L. Therefore, our polynomial vanishes at many points on other
lines of L. If we can check that our polynomial vanishes at d + 1 points on each
line of L, then it vanishes on all the lines of L. So let’s pick a line l ∈ L and try to
estimate how many points of l intersect a line of L0.

Pick a line l ∈ L. It has A intersection points with other lines of L. Fix one of
the intersection points. The probability that this intersection point lies in one of the
lines of L is ≥ (1/10)d2

0 /L. Therefore, the expected number of intersection points
between l and lines of L

2
0 is E ≥ (1/10)Ad /L. We are going to choose d so that

E ≥ 100d. It suffices to choose d so that

(1/10)Ad2/L ≥ 100d.

Rearranging, it suffices to choose d so that d ≥ 1000LA−1. We now choose d to be
an integer which is ≤ 1001L/A and so that E ≥ 100d. On average, the polynomial
P vanishes on ≥ 100d points of l. This suggests that it vanishes on > d points of l
with high probability. Since l was an arbitrary line of L, this suggests that P usually
vanishes on most of the lines of L.

To get rigorous estimates, we need a little bit of probability. In particular, we will
use the following lemma.
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Lemma 1.2. (Probability lemma) Let S be a set of N elements. Let X ⊂ S be a ran-
dom subset where each element of S is included in X independently with probability
p. The expected size of X is pN .

(1) P [|X| > 2pN ] ≤ exp(− 1 pN).
100

(2) P [|X| < (1/2)pN ] ≤ exp(− 1 pN).
100

We will prove the probability lemma at the end. The lemma says that the size of
|X| is close to the expected value pN almost all the time. Now we can begin the
formal proof of Proposition 1.1. We will use large constants that hopefully make the
argument more transparent.

Proof. Let d be a degree which we will choose later. Let p be the number (1/20)d2/L.
We form a subset L0 ⊂ L by including each line independently with probability p.
With high probability, the size of L0 is at most (1/10)d2, and therefore we can find
a non-zero polynomial P of degree ≤ d that vanishes on the lines of L0. (The
probability of this step going wrong is at most exp(− 1 d2), which we can arrange

2000
is always < 1/100.)

Fix a line l. It contains ≥ A intersection points with other lines of L. Each of
these intersection points has a probability ≥ p of lying in a line of L0 \ {l}. These
events are independent. The expected number of points of l lying in lines of L0 is
E ≥ Ap = (1/20)d2A/L.

We now choose d in the range (106 − 1)L/A ≤ d ≤ 106L/A. An easy calculation
shows that E ≥ 104d.

If l intersects L0 in ≥ d+1 points, then P = 0 on l. But by the probability lemma,
the probability that l intersects L0 in ≤ d points is ≤ exp(− 1 E) ≤ exp(−100d) ≤

100

exp(−107L/A).
If L/A > 1000 log L then the probaiblity that l contains ≤ d intersection points

with L is < L−10
0 . In this case, with high probability, P = 0 on every line of L, and

we are done. This is the main case.
In the case that L/A is quite small, the proposition is still true but the proof is

trickier. We sketch what to do in this minor case. We can arrange that P vanishes
on 99% of the lines of L. Let L

′ ⊂ L be the lines where P doesn’t vanish. We have
| ′
L | ≤ (1/100)| ′

L|. Each line of L has ≤ d intersection points with lines of L \ L0.
But it has ≥ A intersection points with lines of L. Now in this case, A is close to
L and d is extremely small, so we can assume that each line of L

′ has ≥ (99/100)A
intersection points with other lines of L

′. Now we can iterate or induct to find a
polynomial P ′ that vanishes on L

′ with degree d′ ≤ (1/10)d, and we’re done. �

Here is a related result which is special to finite fields.

Proposition 1.3. Suppose that X = ∪ 3
l∈Ll ⊂ Fq. If each point of X lies in at least

2 lines of L, then degX . log q|X|q−2.
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Before we prove the result, let’s discuss the bound. We saw in an early lecture
that a non-zero polynomial of degree d vanishes at ≤ dq2 points of 3

Fq. Therefore, for

any set X ⊂ 3
Fq , we have |X|q−2 ≤ degX . |X|1/3. Sets with degree near the upper

bound have no particular algebraic structure. Sets with degree near the lower bound
have the most algebraic structure. So this proposition says that unions of lines with
≥ 2 lines through every point are almost as algebraically structured as possible. In
fact, we will see that the log q factor can be removed as long as |X|q−2 ≥ log q.

As a heuristic, imagine that we also knew that each point of X lies in ≤ 10 lines
of L. Then |L| = L ≤ 10|X|/q. Each line of L contains q points of intersection with
other lines of L. In this case, the last proposition implies that deg(X) . L/A ∼
|X|q−2. The full proof is a modification of the proof of the last proposition, and the
annoying special case at the end seems harder to deal with.

Proof. We form a subset L1 ⊂ L as follows. Suppose that the lines of L are put in
order, l1, l2, ... We go through the list of lines one at a time and decide whether to
add each line to L1. If a given line contains ≥ q/2 points which are not in any line
already in L1, then we add the line to L1. Otherwise we don’t. Since each line of L1

brings ≥ q/2 new points of X, |L1| ≤ 2|X|q−1. Every line in L \ L1 intersects lines
of L1 at ≥ q/2 distinct points. (Otherwise, we would have added it to L1.) We let
L = |L1| ∼ |X|/q.

We let d be a degree to be chosen later, and as above we let L0 ⊂ L1 be a
random subset where each line of L1 is included independently with probability
p = (1/20)d2/L. With high probability, |L0| ≤ (1/10)d2, and we can choose a
non-zero polynomial P of degree ≤ d so that P = 0 on each line of L0.

Let’s assume for now that |X|q−2 ≥ log q. Let l be a line of L that intersects lines of
L1 at ≥ A = q/2 points. Note that every line of L\L1 has this property. The expected
number of intersections between l and lines of 2

L0 is ≥ E = Ap = (1/20)d A/L. As
in the last proof, we choose E so that E ≥ 104d. We can do this with a degree
d ∼ L/A ∼ |X|q−2. More precisely, we can arrange that d is between 105|X|q−2 and
106|X|q−2, and that E ≥ 104d. Now the probability that l intersects lines of L0 in

≤ d places is ≤ exp(− 1 E) ≤ exp(−107|X|q−2) ≤ exp(−107 log q) = q−107

. The
100

total number of lines in 3
Fq is ≤ 10q4, which is much smaller. So we can arrange that

P vanishes on every line l with ≥ q/2 intersections with lines of L1. In particular
P vanishes on all the lines of L \ L1. Finally, a line of L1 either intersects lines of
L1 in ≥ q/2 points, or else it intersects lines of L \ L1 in ≥ q/2 points. Either way,
we conclude that P vanishes on l. To summarize, assuming that |X|q−2 ≥ log q, we
have proven that deg(X) ≤ 106|X|q−2.

Next we turn to the small case, |X|q−2 < log q. The argument goes basically the
same, but now we need to choose E so that E ≥ 104d and E ≥ 104 log q. The second
criterion may be harder in the small case. To arrange it, we need to know that
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(1/20)d2A/L ≥ 104 log q, and so d2 ≥ CLA−1 log q = |X|q−2 log q ≤ C(log q)2. In
this case we can arrange that d . log q. The rest of the argument goes the same. �

Remark: It would be nice to remove this suspicious log q factor, and it would also
be nice to clean up the proof.

Let’s try to list examples of such sets. A plane has this property. A regulus (like
z = xy) has this property. If Xi are sets with this property then the union of Xi

has this property. In particular, unions of planes and reguli have this property. Very
large sets also have this property - say the complement of a few points. Of course,
the complement of a few points is a union of planes, but I wouldn’t be surprised
to find sets with ∼ q3 points with this property which aren’t unions of planes and
reguli. Later we will meet a strange example: the Heisenberg group. The Heisenberg
group has this property, it has ∼ q5/2 points, and it is not a union of planes and
reguli. I conjecture that a set X with this property and < (1/100)q5/2 points is a
union of planes and reguli.

2. An Application

Proposition 2.1. Let L = {li}i ∈ I be a set of lines in 3
Fq. Let Si ⊂ li be a subset

of size ≥ q/2. Let X = ∪iSi ⊂ ∪ili = Y .
Then |Y | ≤ C(log q)|X|.

Remark: As above, the log q factor appears only if |X| < (log q)q2. Perhaps it can
be removed entirely.

We start with a naive application of the polynomial method. We can find a non-
zero polynomial P that vanishes on X with degree d . |X|1/3. If |X| is close to q3,
there is nothing to prove, and so we can assume that d < q/2. Now P vanishes on
≥ q/2 > d points on each line li, so P vanishes on Y . However, this does not give
such a good bound for |Y |. It only implies that |Y | ≤ C|X|1/3q2. For example, if
|X| = q5/2, we get |Y | . q17/6.

We can do better by a degree reduction argument. We sketch the argument here.
It is similar to the last proposition. We make a subset I1 ⊂ I as follows. We
consider the lines li one at a time and decide whether to add itoI1. We add i to I1

if Si contains ≥ q/4 points that aren’t already in the union of {Si}i∈I1. At the end
|I1| = L ≤ 4|X|q−1. Also for each i ∈ I \ I1, Si intersects the sets in I1 in ≥ A = q/4
points.

By the same argument as above, we can find a non-zero polynomial P of degree
d ≤ 106 log q|X|q−2 so that that P vanishes on li for each i ∈ I \ I1, and vanishes on
li for i ∈ I1 as long as Si intersects other sets {Si}i∈I for ≥ q/4 points.

Define Imeager ⊂ I to be the set of i so that Si intersects other Si’s in ≤ q/4 points.
The polynomial P vanishes on li for each i ∈ I \ Imeager. The union of lines li with



6 ALGEBRAIC STRUCTURE AND DEGREE REDUCTION

i ∈ I \ I 2
meager has size ≤ dq . log q|X|. The size of Imeager is ≤ 4|X|q−1. So the

union of the lines in Imeager has size ≤ 4|X|.

3. A Probability Lemma

We recall and prove the probability lemma that we used above.

Lemma 3.1. (Probability lemma) Let S be a set of N elements. Let X ⊂ S be a ran-
dom subset where each element of S is included in X independently with probability
p. The expected size of X is pN .

(1) P [|X| > 2pN ] ≤ exp(− 1 pN).
100

(2) P [|X| < (1/2)pN ] ≤ exp(− 1 pN).
100

Proof. We let a th
j be 1 if the j element of S is included in X and 0 otherwise. The

functions aj are independent, and the probability that aj = 1 is p. Also |X| = j aj .
Using independence we get the following equation, which holds for any n

∑

umber
β ∈ R:

eβ|X| =
∏

eβa
E E j =

∏

Eeβaj = (peβ + 1 − p)N .
j j

On the other hand, P [|X| > 2pN ] e2βpN ≤ Eeβ|X|. Combining these equations, we
get the following upper bound for the probability that |X| is > 2pN :

N
peβ + 1 − p

P [|X| > 2pN ] ≤

[

e2βp

]

.

This bound holds for any β. If β > 0, then the fraction in brackets is < 1. Taking
β = 1, the fraction in brackets is ≤ (1+p(e−1))/(1+2p) ≤ exp(−p/100). Therefore,
inequality 1 holds.

To prove inequality 2, we use a similar argument. We observe that P [|X| < (1/2)pN ] e(1/2)βpN ≤
Eeβ|X|. Thus we get the following upper bound for the probability that |X| is
< (1/2)pN :

N
peβ + 1 − p

P [|X| < (1/2)pN ] ≤

[

e(1/2)βp

]

.

This bound again holds for any β. If β is negative and close to zero, then the
expression in brackets is < 1. In particular, if β = −1/10 then the the expression in
brackets is at most

1 − (1/10)p + (2/100)p
≤ exp(−p/100).

1 − (1/20)p
Therefore, inequality 2 holds. �
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