
POLYNOMIAL CELL DECOMPOSITIONS

1. Polynomial cell decompositions

A union of d planes is a special case of an algebraic surface of degree d. The main
idea in this chapter is to cut space into pieces with a degree d algebraic surface.
Allowing an arbitrary degree d surface instead of just d planes greatly increases our
flexibility. (In R

3, when we pick d planes, we have 3d parameters to play with, but
when we pick a degree d surface we have ∼ (1/6)d3 parameters to play with!) With
all this extra flexibility, we can do a much better job of decomposing space into evenly
matched cells. On the other hand, if Z is a degree d surface, then a line either lies in
Z or intersects Z in ≤ d points. Therefore, each line intersects ≤ d + 1 components
of the complement of Z – exactly the same bound as if Z was a union of d planes.

Theorem 1.1. If S is any finite subset of n
R and d is any degree, then there is

a non-zero degree d polynomial P so that each component of n
R \ Z(P ) contains

≤ C(n)|S|d−n points of S.

We will prove this theorem today. The proof is a cousin of finding a degree d
polynomial that vanishes at ∼ dn prescribed points, but it uses topology instead of
linear algebra.

2. Ham sandwich theorems

We will build our polynomial cell decomposition using a tool from topology, the
ham sandwich theorem. In this section, we develop the tools that we will use.

Theorem 2.1. (Ham sandwich theorem) If U1, ..., Un are finite volume open sets in
n

R , then there is a hyperplane that bisects each set Ui.

This theorem was first proven by Banach in the late 30’s (in the case n = 3).
Then Stone and Tukey generalized the argument to higher dimensions, and they
gave a much more general theorem (see below). We can get a heuristic sense of
the situation by counting parameters. The set of hyperplanes in n

R is given by n
parameters. Heuristically, we might expect that the subset of hyperplanes that bisect
U1 is given by n − 1 parameters; that the subset of hyperplanes that bisect U1 and
U2 is given by n− 2 parameters etc. Another special case happens when each Ui is a
round ball. In that case, the solution is a plane that goes through the center of each
ball. If the centers are in general position, there will be exactly one solution.
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The planes are exactly the zero sets of degree 1 polynomials (polynomials of the
form a1x1 + ...+anxn + b). We can generalize this setup by allowing other functions,
such as higher degree polynomials. Suppose that V is a vector space of functions from

n
R to R. Multiplication by a scalar doesn’t change the zero set of a function f , so
might say heuristically that the family of zero sets is given by dimV − 1 parameters.
For example, if V is the polynomials of degree ≤ 1, then dimV = n + 1, and the
dimension of the set of hyperplanes is n. Since we have dimV −1 parameters to play
with, we might hope to bisect dimV − 1 sets Ui ⊂

n
R . This heuristic turns out to

be correct under very mild conditions on the space V .
To state our theorem, we make a little basic notation. For any function f : n

R →
R, we let Z(f) := {x ∈ n

R |f(x) = 0}. We say that f bisects a finite volume open
set U if

V oln{x ∈ U |f(x) > 0} = V oln{x ∈ U |f(x) < 0} = (1/2)V olnU.

Theorem 2.2. (General ham sandwich theorem, Stone and Tukey, 1942) Let V be
a vector space of continuous functions on n

R . Let U1, ..., UN ⊂ n
R be finite volume

open sets with N < dimV . For any function f ∈ V \ {0}, suppose that Z(f) has
Lebesgue measure 0. Then there exists a function f ∈ V \ {0} which bisects each set
Ui.

The ham sandwich theorem is one corollary, given by taking V to be the degree
1 polynomials. If we consider the space of polynomials with degree ≤ d, we get the
following corollary.

Corollary 2.3. (Polynomial ham sandwich theorem)

Proof. We let V (d) be the space of polynomials of degree ≤ d. We saw in the very
beginning of the course that dimV (d) =

(

d+n
)

. It’s also easy to check that for a
n

non-zero polynomial P , Z(P ) has measure 0. We leave this as an exercise. �

The polynomial ham sandwich theorem is analogous to the more basic polynomial
existence lemma which we have been using throughout the course. We rewrite the
lemma here to make the analogy clear.

Lemma 2.4. (Polynomial existence lemma) If p1, ..., pN ∈ n
R are points and N <

(

d+n
)

, then there is a non-zero polynomial of degree ≤ d that vanishes at each xi.n

The polynomial existence lemma is analogous to the polynomial ham sandwich
theorem. The first is based on linear algebra, and the second is based on topology.
The polynomial existence lemma was a basic step in all of our arguments. Using the
polynomial ham sandwich theorem instead gives a new direction to the polynomial
method.
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3. On the proof of the ham sandwich theorem

The heuristic argument above using parameter counting is definitely not a proof.
The proof of the ham sandwich theorem is based on the Borsuk-Ulam theorem.

Theorem 3.1. (Borsuk-Ulam) Suppose that φ : SN → N
R is a continuous map that

obeys the antipodal condition φ(−x) = −φ(x) for all x ∈ SN . Then the image of φ
contains 0.

For a proof of the Borsuk-Ulam theorem, the reader can look at Matousek’s book
Using the Borsuk-Ulam theorem or in the book Differential Topology by Guillemin
and Pollack, Chapter 2.6. The book Using the Borsuk-Ulam theorem discusses some
surprising applications of Borsuk-Ulam to combinatorics.

Proof of the general ham sandwich theorem. For each i from 1 to N , we define φi :
V \ {0} → R by

φi(F ) := V ol ({x ∈ Ui|F (x) > 0}) − V ol ({x ∈ Ui|F (x) < 0}) .

So φi(F ) = 0 if and only if f bisects Ui. Also, φi is antipodal, φi(−F ) = −φi(F ).
We will check below that φi is a continuous function from V \ {0} to R. We

assemble the φ N
Ri into one function φ : V \ {0} → .

We know that dimV > N , and without loss of generality we can assume that
dimV = N + 1. Now we choose an isomorphism of V with N

R
+1, and we think of

SN as a subset of V . The map φ : SN → N
R is antipodal and continuous. By the

Borsuk-Ulam theorem, there is a function f ∈ SN ⊂ V \ {0} so that φ(f) = 0. This
function f bisects each Ui. �

It only remains to check the technical point that φi is continuous. This follows
from the next lemma. It’s basically an exercise in measure theory.

Continuity Lemma. Let V be a finite-dimensional vector space of continuous func-
tions on n

R . Suppose that for each f ∈ V \ {0}, the set Z(f) has measure 0.
If U is a finite volume open set, then the measure of the set {x ∈ U |f(x) > 0}

depends continuously on f ∈ V \ {0}.

Proof. Suppose that f is a function in V \ {0} and fn ∈ V \ {0} with fn → F in V .
A priori, fn converges to f in the topology of V . But then it follows that fn → f
pointwise. Pick any ǫ > 0. We can find a subset E ⊂ U so that fn → f uniformly
pointwise on U \ E, and m(E) < ǫ.

The set {x ∈ U |f(x) = 0} has measure zero. Therefore, we can choose δ so that
the set {x ∈ U such that |f(x)| < δ} has measure less than ǫ.

Next we choose n large enough so that |fn(x) − f(x)| < δ on U − E. Then the
measures of {x ∈ U |fn(x) > 0} and {x ∈ U |f(x) > 0} differ by at most 2ǫ. But ǫ
was arbitrary. �
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4. Ham sandwich for finite sets

We now adapt the ham sandwich theorem to finite sets of points. Instead of open
sets Ui, we will have finite sets Si. We say that a polynomial P bisects a finite set S
if at most half the points in S are in {P > 0} and at most half the points in S are
in {P < 0}. Note that P may vanish on some or all of the points of S. We will give
an example below to illustrate why we want this definition.

Corollary 4.1. Let S1, . . . , SN be finite sets of points in n
R with N <

(

n+d
n

)

. Then
there is a non-zero polynomial of degree ≤ d that bisects each set Si.

Let us give an example now. Suppose that we take two sets S1 and S2 in the
plane, both lying on the x-axis, with S1 ⊂ [0, 1] × {0} and S2 ⊂ [2, 3] × {0}. Since
2 <

(

2+1

2

)

= 3, we should be able to choose a degree 1 polynomial to bisect both S1

and S2. The only option is to choose the x1-axis : any transverse line will fail to
bisect one of the two sets. Because of this situation, we have to allow p to “bisect”
a finite set S in the case that p vanishes on S.

The proof of the theorem is to replace the finite sets by finite unions of δ-balls,
apply the polynomial ham sandwich theorem, and then take δ → 0. We include the
details here, but this is again just an analysis exercise.

Proof. For each δ > 0, define Ui,δ to be the union of δ-balls centered at the points
of Si. By the polynomial ham sandwich theorem we can find a non-zero polynomial
Pδ of degree ≤ d that bisects each set Ui,δ. In fact, the proof of the ham sandwich
theorem tells us that Pδ ∈ SN ⊂ V (d) \ {0}.

Now we can find a sequence δm → 0 so that pδm
converges to a polynomial

PinSN ⊂ V (d) \ {0}. Since the coefficients of Pδm
converge to the coefficients of

P , it’s easy to check that Pδm
converges to P uniformly on compact sets.

We claim that P bisects each set Si. We prove the claim by contradiction. Suppose
instead that P > 0 on more than half of the points of Si. (The case P < 0 is similar.)
Let S+

i ⊂ Si denote the set of points of Si where P > 0. By choosing ǫ sufficiently
small, we can assume that P > ǫ on the ǫ-ball around each point of S+

i . Also, we can
choose ǫ small enough that the ǫ-balls around the points of Si are disjoint. Since Pδm

converges to p uniformly on compact sets, we can find m large enough that Pδm
> 0

on the ǫ-ball around each point of S+

i . By making m large, we can also arrange that
δm < ǫ. Therefore, Pδm

> 0 on more than half of Ui,δm
. This contradiction proves

that P bisects Si. �

5. Cell decompositions

Theorem 5.1. If S is any finite subset of n
R and d is any degree, then there is

a non-zero degree d polynomial P so that each component of n
R \ Z(P ) contains

≤ C(n)|S|d−n points of S.
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Proof. Find a polynomial P0 of degree 1 that bisects S. Some points of S lie in
Z(P0). The rest lie in S+ and S

−
, which each have ≤ |S|/2 points. The sets S+

and S
−

are in different components of the complement of Z(P0). Next we find a
low degree polynomial P1 that bisects S+ and S

−
. Neglecting the points in Z(P1)

we have four subsets of S left each with ≤ |S|/4 points. These four subsets lie
in different components of the complement of Z(P0P1). We continue in this way to
define polynomials P2, P3, etc. The polynomial P bisects 2j

j sets. By the polynomial
ham sandwich theorem, we can find Pj with degree ≤ C(n)2j/n. Each component of
the complement of Z(P0 · ... · P

−

j) has ≤ |S|2 j points.
We repeat J times, and we let P = P0 · ... ·PJ . Each component of the complement

of Z(P ) has ≤ |S|2−J points of S. We need to choose d so that deg(P ) ≤ d, which

means that C(n)
∑J

j=0
2j/n ≤ d. The sum is a geometric sum, and the last term

is comparable to the whole. Therefore, we can arrange that degP ≤ d and also
2J/n & d. Therefore, 2J & dn, and each component of the complement of Z(P ) has
. |S|d−n points of S. �

We should also give a caveat. The theorem does NOT guarantee that the points
of S lie in the complement of Z(P ). In fact it is possible that S ⊂ Z(P ). There
are two extreme cases. If all the points of S lie in the complement of Z(P ), then we
get optimal equidistribution, and we have a good tool to do a divide-and-conquer
argument. If all the points of S lie in Z(P ), then we see that deg(S) ≤ d, and we
get a good degree bound on S. Generally, S will have some points in Z(P ) and some
points in the complement. One part of S has a low degree and the other part of S
is spread out well among the cells.
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