
THE BERLEKAMP-WELCH ALGORITHM

Suppose that we have a polynomial P of fairly low degree over a finite field F. The
data is corrupted, leaving a function F : F → F, and we know that F (x) = P (x)
for a certain fraction of x ∈ F. We want to understand whether we can recover P
from F with an efficient algorithm. In particular, our main goal is to explain the
Berlekamp-Welch algorithm. We present here the following case of the Berlekamp-
Welch result. (We’re not trying to be as general as possible, but just to get a flavor
of the subject and see the key ideas in the proof.)

Theorem 0.1. (Berlekamp-Welch, 1986) Suppose that

• F has q elements,
• the degree of P is < q/100, and
• F (x) = P (x) for at least (51/100)q values of x.

Under these assumptions, there is an efficient algorithm to recover P from F .

The ideas depend on the following elementary but fundamental vanishing lemma
for polynomials.

Lemma 0.2. If P (x) is a polynomial of degree ≤ D, and P vanishes at D+1 distinct
points, then P is the zero polynomial.

We will recall the proof of this lemma later in the lecture.
One application is that a polynomial P of degree D can be recovered if we know

its values at any D+1 points. Let S be a set of D+1 points, S = {x F1, ..., xD+1} ⊂ .
Let V1(D) be the vector space of polynomials in one variable of degree ≤ D. Consider
the evaluation map ES which evaluates a given polynomial at the points of S:

ES(P ) := (P (x1), ..., P (xD+1)) .

The evaluation map ES : V (D) → D
F

+1
1 is a linear map. By the vanishing lemma,

the kernel of ES is zero. Since the domain and range have the same dimension,
ES is an isomorphism. Therefore, P can be recovered from its values on the set S.
Moreover, recovering P amounts to solving a system of linear equations, so it can be
done efficiently.

There are at least (51/100)q points x where F (x) = P (x). If we knew which points
they were, we could recover P by this interpolation procedure, because the degree
of P is < q/100. The whole point is that we don’t know where F is still correct and
where F has been corrupted.

1



2 THE BERLEKAMP-WELCH ALGORITHM

1. The algorithm

Now we turn to the algorithm. We will consider the graph of F . To set conventions,
the graph of F is the set

{(x, y) ∈ F
2|y = F (x)}.

We are hoping to find some nice algebraic structure hidden in the graph of F . To
do so, we will find a low degree polynomial R(x, y) which vanishes on the graph of
F . It turns out to be a good idea to consider polynomials of the form R(x, y) =
R0(x) + R1(x)y. We may/will talk more about this choice later. Let’s define W (d)
to be the vector space of polynomials of the form R0(x) + R1(x)y where R0 and R1

have degree ≤ d. The dimension of W (d) is 2d + 2. The graph of F has q elements.
As long as 2d + 2 > q, there is a non-zero polynomial in W (d) which vanishes on
the graph of F . In particular, there is such a polynomial of degree d ≤ q/2. Finding
such a polynomial just involves linear algebra, so we can find it in polynomial time.
In fact, with a little more work we can find a polynomial that vanishes on the graph
of F of minimal degree. Let us define R(x, y) to be a lowest-degree polynomial of
the form R(x, y) = R0(x) + R1(x)y that vanishes on the graph of F . We know that
the degree of R0 and R1 is ≤ q/2.

The key observation in the whole argument is that R also vanishes on the graph
of P .

Claim 1.1. The polynomial R vanishes on the graph of P . In fact, R(x, P (x)) is
the zero polynomial.

Proof. We know that R vanishes on the graph of F .
Therefore, R(x, F (x)) = 0 for all x.
Since F (x) = P (x) for most x, we see that R(x, P (x)) = 0 for at least (51/100)q

values of x.
Now R(x, P (x)) = R0(x) + R1(x)P (x) is a polynomial in x of degree < q/2 +

q/100 = (51/100)q. By the vanishing lemma, this polynomial is identically zero. �

We can now describe how to recover the polynomial P . We just proved that
R0(x) + R1(x)P (x) is the zero polynomial. In other words, R1(x)P (x) = −R0(x).
So R0 is divisible by R1, and P is equal to −R1/R0.

This finishes the BW algorithm, but it’s interesting to explore a little more about
the minimal degree polynomial R(x, y).

We let E ⊂ F be the set {e ∈ F|F (x) = P (x)}. We call E the set of error locations.
It turns out that the zero set of R is exactly the graph of P together with a vertical
line {x = e} for each error location e. (Picture?)

Claim 1.2. For each e ∈ E, R(x, y) vanishes on the line x = e.

6



THE BERLEKAMP-WELCH ALGORITHM 3

Proof. Fix e ∈ E. We consider R(e, y) = R0(e) + R1(e)y. We want to prove that
R(e, y) is the zero polynomial in y - in other words that R0(e) = R1(e) = 0. We
know that R(e, F (e)) = 0 and R(e, P (e)) = 0. Since F (e) = P (e), we see that the
linear polynomial R0(e) + R1(e)y vanishes at two different values of y. So the linear
polynomial must vanish. �

In fact, we can say exactly what the minimal degree polynomial R(x, y) is.

Claim 1.3. R(x, y) = c [y − P (x)]
∏

e∈E(x − e), for some non-zero constant c ∈ F.

From this last claim it follows that R vanishes exactly on the graph of P together
with the vertical lines at the error locations. From this information, we can easily
identify the set E, giving another way to recover the polynomial P .

The proof of this claim involves a fundamental idea/argument. The argument first
appears in the proof of the vanishing lemma, so we begin by giving this proof. Then
we develop the idea a bit further to prove a divisibility lemma which leads to the
claim.

2. Vanishing and divisibility lemmas

Vanishing lemma. If P (x) is a polynomial of degree ≤ D, and P vanishes at D+1
distinct points, then P is the zero polynomial.

Proof of the vanishing lemma. We go by induction on D. The case D = 0 is
trivial. The heart of the matter is in the following divisibility lemma.

Lemma 2.1. If P (x) is any polynomial and P (x1) = 0 for some x1 ∈ F, then
P (x) = (x − x1)P1(x) for some polynomial P1.

Proof. Suppose P (x) =
∑D

j=0
ajx

j . We can write any degree D polynomial P in the
following form:

P (x) = (x − x1)(b
D−1

D−1x + ... + b0) + r.

To see this, first we choose the coefficient bD−1 in order to get the xD term correct.
None of the lower coefficients influence the xD term, so we are still free to choose
them. Next, we choose b D−1

D−2 to get the x term correct, etc. We choose b0 to get
the x term correct, and we choose r to get the units term correct.

But now, since P (x1) = 0, we must have r = 0, and our factoring is done. �

We return to the vanishing lemma. Suppose that P vanishes at x1, ..., xD+1 distinct
points. By the divisibility lemma, we see that P (x) = (x − x1)P1(x), where P1(x)
has degree ≤ D − 1. But P1 must vanish at x2, ..., xD+1. By induction, P1 = 0, and
we are done. This finishes the proof of the vanishing lemma.

6



4 THE BERLEKAMP-WELCH ALGORITHM

With the same proof idea, we can prove a simple divisibility lemma for polynomials
in two variables.

Lemma 2.2. If R(x, y) is a polynomial of two variables, and P (x) is a polynomial in
one variable, and R(x, P (x)) is the zero polynomial, then R(x, y) = (y−P (x))R1(x, y)
for some polynomial R1.

Proof. Let R(x, y) =
∑D

j=0
aj(x)yj, where aj(x) is a polynomial in x. Now, we can

write any polynomial R(x, y) in the following form:

R(x, y) = (y − P (x))(bD−1(x)yD−1 + ... + b0(x)) + r(x),

where the bj(x) and r(x) are polynomials in x. The proof is basically the same as
above. First we choose the polynomial bD−1(x) in order to get the yD term correct.
None of the lower coefficients influence the yD term, so we are still free to choose
them. Next, we choose bD−2 to get the yD−1 term correct, etc. We choose b0 to get
the y term correct, and we choose r to get the units term correct.

But R(x, P (x)) is r(x), so r(x) is the zero polynomial. This gives the required
factoring of R(x, y). �

As a corollary, we can quickly prove the last claim about the polynomial R(x, y) in
the Berlekamp-Welch algorithm. We know that R(x, P (x)) is the zero polynomial,
so R(x, y) = (y − P (x))R1(x, y). Because R(x, y) has degree 1 in y, it follows that
R1 must have degree 0 in y: in other words, R1 = R1(x) is a polynomial in x only.
So R(x, y) = (y−P (x))R1(x). At each e ∈ E, R(x, F (x)) vanishes, but F (x)−P (x)
doesn’t, and so R1(e) = 0. Using the divisibility lemma in one variable, we see that
R(x, y) = (y − P (x))

∏

e∈E(x − e)R2(x). Any polynomial of this form vanishes on
the graph of F . Since R is a polynomial of minimal degree, it follows that R2(x) is
just a constant c = 0.

Our last divisibility lemma is closely related to Bezout’s theorem. The formulation
of the last lemma depended on the special form of the polynomial y − P (x), but
Bezout’s theorem says something similar about two arbitrary polynomials. Here is
one formulation of Bezout’s theorem.

Theorem 2.3. Suppose that P (x, y) and Q(x, y) are polynomials. Let Z(P, Q) be
the set of common zeroes of P and Q. In other words,

Z(P, Q) := {(x, y) ∈ F
2|P (x, y) = Q(x, y) = 0}.

Then either

(1) Z(P, Q) has at most (degP )(degQ) points, or
(2) P and Q have a non-trivial common factor. In other words, P = R(x, y)P1(x, y)

and Q = R(x, y)Q1(x, y) for some polynomial R(x, y) with degree ≥ 1.

6



THE BERLEKAMP-WELCH ALGORITHM 5

This is an important theorem that we will prove and discuss more during the
course. With a little extra trick, it recovers the last divisibility theorem as a special
case. It’s an interesting problem to try to prove the Bezout theorem by generalizing
the last proof.

The arguments above are also related to the proof that there is unique factorization
in the ring of polynomials F[x1, ..., xn] for any number of variables.

3. Correcting polynomials from badly corrupted data

In the Berlekamp-Welch algorithm, we considered corrupted data F which was
correct a little more than half the time. If F is correct only half the time, then it’s
impossible to recover the polynomial P even in theory. For example, start with two
low degree polynomials P1 and P2, and arrange for F to agree with P1 half the time
and with P2 half the time. There is no way to tell if the original polynomial was P1

or P2. Following this observation, it may seem that data F which is correct only 1
% of the time would not be very useful. Surprisingly, it turns out that a great deal
of information can be recovered from such data. In the mid 90’s, Sudan generalized
the algorithm of Berlekamp-Welch to deal with highly corrupted data. For example,
he proved the following result.

Theorem 3.1. (Sudan, 1997) Suppose that F is a field with q elements, and that F :
F → F is any function. There is an efficient algorithm that lists all the polynomials
of degree ≤ (1/200)q1/2 that agree with F at least 1 % of the time.

We have the tools to follow most of the steps of Sudan’s argument. We again
consider the graph of F in F

2. We find a low-degree polynomial Q(x, y) that vanishes
on the graph. This time we consider all the polynomials of two variables. If we let
V (d) be the space of polynomials in two variables of degree ≤ d, then the dimension
of V (d) is

(

d+2
)

. The graph of F has q elements. As long as
(

d+2

2 2

)

> q, we can find
a polynomial Q(x, y) of degree ≤ d that vanishes on the graph. So we can find a
non-zero Q with degree d ≤ 2q1/2.

Suppose that P has degree ≤ (1/200)q1/2, and that P (x) = F (x) for at least
q/100 values of x. We claim that Q(x, P (x)) is the zero polynomial. This follows
for the same reason as above. We know that Q(x, F (x)) is zero for every x. So
Q(x, P (x)) has at least q/100 zeroes. But Q(x, P (x)) is a polynomial of degree at
most (degQ)(degP ) < 2q1/2(1/200)q1/2 = q/100. Therefore Q(x, P (x)) is identically
zero.

By the divisibility lemma in the last section, we see that y−P (x) divides Q(x, y).
There is a polynomial time algorithm that factors Q into irreducible factors. This
step is not at all obvious, and it requires different ideas. Now we can recover all the
good polynomials P by examining the factors of Q for factors of the form (y−P (x)).



MIT OpenCourseWare
http://ocw.mit.edu

18.S997 The Polynomial Method
Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms



