
Polynomial Method

Theorem 0.1 (3D Szemerédi-Trotter). Given S points and L lines in R3 with at most B lines in
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any plane, the number of incidences I(S,L) is at most S 2L 4 +B 3L 3S 3 + S + L.

The four terms of that sum are tight for, respectively, a 3-D grid, L/B planes with B lines
in each with the 2-D Szemerédi-Trotter arrangement, all points collinear, and all lines concurrent,
respectively.

We already know that I(S,L) ≤ S2 + L and I(S,L) ≤ L2 + S by counting, and I(S,L)
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≤
C[L 3S 3 + L + S] by Szemerédi-Trotter. So we’re already done unless S ≤ L2 ≤ S4 (ignoring
constants).
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Claim 1 (Cell Estimate). In a polynomial cell decomposition of degree d, I(S,L) ≤ C[d− 3S 3L 3 +
dL+ Scell] + I(Salg, Lalg).

Proof.∑Let the cells be Oi, and let Si and Li be the number of points and lines that intersect Oi.
Then Si = Scell∑≤ S, Li ≤ dL, and Si ≤ d−3S. (Here and henceforth, we drop constants.)
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inequality, that’s at most d−
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( 1S 3 ( Si) 3 ( 3
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i Li + Si = d− 3S 3L 3 + dL+ Scell.

Finally, I(Salg, Lcell) ≤ dL by degree bounding, so we’ve coun

∑
ted everything

∑
but I(Salg, Lalg),

as desired.

Let Lp, Lm and Lu (“planar,” “multiplanar,” and “uniplanar”) be the sets of lines in at least
one, at least two, and exactly one plane of Z(P ), respectively, and let Sp, Sm, and Su be the same
for points.
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Claim 2 (Planar Estimate). I(Salg, Lp) ≤ C[B 3L 3S 3 + dL+ Su] + I(Sm, Lm).

Also, |Lm| ≤ d2; we’ll choose d small enough that the last term is handleable by induction.

Proof. I(Salg, Lp) ≤ I(Salg, Lu) + I(Sm, Lm), since a line in multiple planes only hits points in
multiple planes. Let Π be the set of planes

I(Salg, Lu) ≤ π Π I(S∈ π, Lu:π) ≤
Inequality as before,

∑
that’s at most dL

∑ in Z(P ).

π dLu:π+I(Su:π, Lu:π). By the same application of Hölder’s
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+B 3L 3S 3 + Su.

That leaves the nonplanar algebraic lines (and multiplanar lines) to bound. We’ll use special
points, that is, flat or critical points, that is, points at which SP (which has degree at most 3d) is
0 and special lines, on which every point is special.

Let Ss and Sn be the sets of special and nonspecial points, respectively, in Salg, and define Ls
and Ln similarly.

Claim 3 (Algebraic Estimate). I(Salg, Lalg \Lp) ≤ C[dL+Sn]+ I(Ss, Ls \Lp), and |Ls \Lp| ≤ 10d2

Proof. Recall that

1. If x is in three lines of Z(P ) then x is special,

1



2. x is special iff SP (x) is 0, where deg(SP ) ≤ 3d, and

3. The number of lines that are special but not planar is at most 10d2.

Now, I(Salg, Lalg \ Lp) ≤ I(Sn, Lalg + I(Ss, Ln) + I(Ss, Ls \ Lp). The first term is at most 2Sn by
the first recalled property and the second term is at most 3dL by the second recalled property.

That leaves I(Ss, Ls \Lp) and I(Sm, Lm) to bound; those contain at most 11d2 lines. Let S′ =
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S \ (Ss∪Sm). We already have I(S,L) ≤ d− 3L 3S 3 +dL+B 3L 3S 3 +S′+I(Ss, Ls \Lp)I(Sm, Lm).
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Lemma 1. The minimum value of d− 3L 3S 3 + dL+ B 3L S 3 + S with d ∈ [1, 1
3 L 2 ] (and B ≥ L 2
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is about S 2L 4 +B 3L 3S 3 + S′

Proof. Just do it.
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So I(S,L) ≤ C[S 2L 4 + B L L
3L 3S 3 + S′] + C0[S 2 ( ) 4 + B 3 ( ) 3S 3 + (S S )], and we can2 2
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choose C0 arbitrarily and bigger than, say, 100C, so that’s at most C0[S 2L 4 +B 3L 3S 3 + S + L],
as desired.

0.1 Efficiency of Polynomials

Theorem 0.2 (“Efficiency of Polynomials”). If P : C → C is a polynomial and F : C → C is
smooth (not necessarily holomorphic), and F = P outside some bounded domain Ω, and 0 is a
regular value of P and F , then P has at most as many zeros in Ω as F does.

(If F : Mm → Nn is a function, then x ∈ M is a critical point iff dFx isn’t surjective, and a
regular point otherwise. y ∈ N is regular iff all its preimages are regular. In our case, if x ∈ Z(F ),
that 0 is a regular value implies that dFx : R2 → R2 is an isomorphism. Call σ(x) 1 if dFx preserves
orientation and -1 otherwise.)

If P is a complex polynomial, then σP (x) = +1 for all x ∈ Z(P ).

Theorem 0.3. The winding number of F : ∂Ω→ C\{0} is
∑

x Z(F ) Ω σF (x) =∈ ∩
∑

x∈Z(P )∩Ω σP (x).
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