
WHAT’S SPECIAL ABOUT POLYNOMIALS? (A GEOMETRIC
PERSPECTIVE)

This section is for context and background. We discuss some results about polyno-
mials from the point of view of geometry/topology. I think there are some interesting
philosophical ideas here. We build up to an application of the general ham sandwich
theorem to prove a geometric estimate about polynomials. This geometric argument
is a precursor of the applications of the ham sandwich theorems in this section. We
will not give complete proofs here. We sketch the main ideas when we can.

From the point of view of differential geometry and topology, polynomials (over C

or R) are strikingly efficient. I learned this point of view from V. I. Arnold’s essay
on the “Topological economy principle in algebraic geometry”, in the Arnoldfest.

We begin with examples about complex polynomials. In fact, all these examples
are true more generally of holomorphic functions. Polynomials in one variable are
efficient in terms of the number of zeroes. We make this precise in the following
proposition, which is closely related to material in a first course on complex analysis
or in differential topology.

Theorem 0.1. Suppose that P : C → C is a complex polynomial in one variable (or
just a holomorphic function). We identify C with R2, and suppose that F : R2 → R2

is any smooth function which agree with P outside of the unit disk D. Finally, assume
that 0 is a regular value for both P and F . Then the number of zeroes of P in D is
less than or equal to the number of zeroes of F in D.

We sketch the main idea of the proof. A point x ∈ R2 is a regular point of F if
the derivative dF : R2 → R2

x is an isomorphism. When we say that zero is a regular
value, it means that each point x with F (x) = 0 is a regular point. Let x1, ..., xN be
the points in the unit disk where F (x) = 0. Each such x can be given a multiplicity
of +1 if detdFx > 0 and −1 if detdFx < 0. We denote the multiplicity by m(xi).
Let us assume for the sketch that F and P don’t vanish on the unit circle S1. Then
F : S1 → R2 \ {0}, and F has a well-defined winding number around 0, denoted
W (F ). In differential topology, one proves that the winding number W (F ) is equal
to the sum of the multiplicities: W (F ) = i m(xi). There is a similar formula for the
polynomial P . Since P and F agree on S

∑
1, W (F ) = W (P ). But P is a holomorphic

function, and so dPx is a complex linear map which must be orientation preserving.
The multiplicity of P at each of its zeroes is 1, and so the number of zeroes of P in
D is exactly W (P ) = W (F ). Therefore, the number of zeroes of F in D is at least
the number of zeroes of P in D.
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The result says that P has no unnecessary zeroes. Also, there is nothing special
about 0. If w ∈ C denotes any regular value of P and F , then there are at least as
many points in D where F (z) = w as points where P (z) = w. There is also nothing
special about the unit disk, which can be replaced by other open sets. I don’t know
the history of this result. It may have been known in the 19th century.

This result holds for all holomorphic functions, and in fact just for functions whose
derivatives are orientation preserving.

Complex polynomials in several variables are efficient in terms of the surface area
of their zero sets.

Theorem 0.2. Suppose that P : Cn → C is a complex polynomial (or just a holo-
morphic function). We identify C with R2 and Cn with R2n, and suppose that
F : R

2n → R
2 is any smooth function which agree with P outside of the unit ball

B2n. Finally, assume that 0 is a regular value for both P and F . Let Z(P ) denote
the zero set of P , and let Z(F ) denote the zero set of F . Since 0 is a regular value,
these are both smooth manifolds of dimension 2n − 2.

Then the volume of Z(P ) ∩ B is smaller than the volume of Z(F ) ∩ B:

V ol2n−2[Z(P ) ∩ B] ≤ V ol2n−2[Z(F ) ∩ B].

Here we are using the standard Euclidean metric on R2n. If we take n = 1, then
this theorem reduces to the first theorem, because Z(P ) is a finite set of points and
its volume is just the number of points. A related result is that Z(P ) is a minimal
surface. If we take Z(P ) ∩ ∂B, we get a closed (2n − 3)-dimensional surface, and
Z(P ) ∩ B is the smallest surface with that boundary.

This result plays an important role in the theory of minimal surfaces and in dif-
ferential geometry. (I am not sure of its history either. I have seen it attributed to
DeRham or to Federer. I believe it dates from the 1950’s. ) The proof uses differ-
ential forms. It has had a significant influence in geometry - many other arguments
modelled on it have appeared since then. This type of argument was dubbed a cali-
bration argument by Harvey and Lawson who generalized it to many other settings.
A good place to read about this material is their paper “Calibrated geometries” in
Acta Math. 148 (1982), 47-157.

We can give some idea of the argument without mentioning differential forms as
follows. Let L denote any complex line in C

n. The intersection L∩ Z(P ) is just the
points of L where P vanishes, and L∩Z(F ) is just the points of L where F vanishes.
Let us therefore consider F as a function from L to C. It won’t necessarily happen
that zero is a regular value for this function, but for almost every complex line L,
zero is a regular value for both F and P . Then we can apply the one-dimensional
result, and we get the following.

Lemma 0.3. For almost every complex line L ∈ Cn,
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|L ∩ Z(P ) ∩ B| ≤ |L ∩ Z(F ) ∩ B|.

The intersections of a surface X with various lines and the volume of X are con-
nected. The branch of math that studies this connection is called integral geometry.
Carefully assembling the information in the last lemma, it’s possible to prove that
V ol[Z(P )∩B] ≤ V ol[Z(F )∩B]. We won’t sketch the proof here, but we give a tiny
introduction to integral geometry below.

Complex polynomials are also efficient in terms of the topological complexity of
their zero sets. In particular, there is a striking theorem about polynomials in two
variables.

Theorem 0.4. (Kronheimer-Mrowka) Suppose that P : C2 → C is a complex poly-
nomial in two variables. We identify C2 with R4, and suppose that F : R4 → R2

is any smooth function which agree with P outside of the unit ball B4. Assume that
0 is a regular value for both P and F . Let Z(P ) denote the zero set of P , and let
Z(F ) denote the zero set of F . Let’s also assume that Z(P ) and Z(F ) are connected.
Then the genus of Z(P ) is at most the genus of Z(F ).

If Z(P ) or Z(F ) is disconnected, some form of this theorem still holds, but it
takes more care to state it. The theorem was proven in the paper “Gauge theory
for embedded surfaces. I.” in Topology 32 (1993), no. 4, 773-826. The proof of the
theorem uses gauge theory, and we can’t even sketch it here. It has applications in
low-dimensional topology, for example in knot theory. I believe this theorem is also
true more generally for holomorphic functions (because an arbitrary holomorphic
function can be well-approximated by a polynomial in any compact set). I’m curious
whether some version of this topological efficiency holds for complex polynomials
P : C

n → C – as far as I know, this is an open problem.
So far, we have seen examples of the efficiency of complex polynomials, and more

generally of holomorphic functions. The reader may well say that the key property
involved is being holomorphic, not being polynomial. What about real polynomials?
Are any of these theorems true for polynomials over R?

All three theorems are completely false for polynomials over R. For example, a
real polynomial may have P (−1) = −1, P (1) = 1, and may have 113 zeroes in
(−1, 1). A competitor function F may have only 1 zero in (−1, 1) - the other 112
zeroes are unnecessary. Modifying this example a bit, it’s easy to check that the
second theorem is false, and the it’s not hard to see that the third theorem is false
too. In fact, any smooth function can be well approximated by a real polynomial,
which suggests that real polynomials cannot have any special properties at all.

But if we switch our point of view from individual polynomials to the whole space
of polynomials, then some version of the first two theorems survives for polynomials
over R. Let Vn(d) denote the vector space of all polynomials of degree ≤ d in n
variables. This vector space of functions is “efficient” in a certain sense.
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Theorem 0.5. Pick a degree d and consider the space of polynomials of degree ≤ d
in one variable: V1(d). This space has dimension d + 1. Let W be any other vector
space of real-valued functions with dimension d + 1. Every polynomial in V1(d) \ {0}
has at most d zeroes. Then some function F ∈ W \ {0} has at least d zeroes.

This is a basic dimension counting argument, of the kind we have used many times.

Proof. Pick any d points x1, ...., xd ∈ R. Let E be the evaluation map E : W → Rd

given by E(F ) = (F (x1), ..., F (xd)). The map E is linear, and the dimension of the
domain is greater than the dimension of the range. Therefore E has a non-trivial
kernel. Let F be a non-zero element in ker E. �

The set of real polynomials in n variables is also efficient in a similar way.

Theorem 0.6. (Gromov) For any d ≥ 1,

sup V oln−1Z(P ) ∩ Bn ∼ d.
0=P∈Vn(d)

If W is any vector space of continuous functions defined on the unit n-ball Bn,
with dim W ≥ dim Vn(d), then

sup V oln−1Z(F ) ∩ Bn & d.
0=F∈W

This theorem says that the vector space Vn(d) is fairly efficient in terms of the
volumes of zero sets. For a space of functions W from the unit ball Bn to R,
define MaxV ol(W ) to be sup0=F∈W V oln−1Z(F ) ∩ Bn. The theorem says that if
dimW = dimVn(d), then MaxV olVn(d) ≤ CnMaxV olW . (It’s an open problem
whether MaxV olVn(d) ≤ MaxV olW .)

The first half of the result comes from integral geometry, and it was known in the
early 20th century. The second half is much more recent. It was proven by Gromov
in the paper, “Isoperimetry of waists and concentration of maps” in Geom. Funct.
Anal. 13 (2003), no. 1, 178-215.

We describe the proof of each half.
1. Let P be a non-zero polynomial of degree ≤ d. For a line l ⊂ Rn, either

|l ∩ Z(P )| ≤ d or else l ⊂ Z(P ). If Xn−1 ⊂ R
n is a hypersurface, then the volume

of X is connected to the number of intersections |l ∩ X| with different lines. The
connection is made by the Crofton formula, which we now describe.

Let AG(1, n) be the set of affine lines in Rn. The group of rigid motions of Rn,
Grigid, acts transitively on AG(1, n). In fact, AG(1, n) is the quotient of the group of
rigid motions by the stabilizer of one line. Using the Haar measure on Grigid, we get
a Grigid-invariant measure on AG(1, n), dµ. This measure is unique up to scaling.
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Theorem 0.7. (Crofton) There exists a constant αn so that the following equation
holds for every (smooth) hypersurface X ⊂ Rn:

V oln−1(X) = αn

∫
|l ∩ X|dµ(l).

AG(1,n)

We give the idea of the proof. We abbreviate the RHS by Crof(X). We want to
prove that the two sides are equal, and we note some qualities that the two sides
have in common.

1. Disjoint unions. If X is the disjoint union of X1 and X2, we have V oln−1X =
V oln−1X1 + V oln−1X2 and Crof(X) = Crof(X1) ∩ Crof(X2).

2. Rigid motion invariance. If g is a rigid of Rn, then V oln−1(gX) = V oln−1(X)
and Crof(gX) = Crof(X).

We choose αn so that Crof([0, 1]n−1) = 1 = V oln−1([0, 1]n−1). By the two prop-
erties above, we easily see that Crof([0, s]n−1) = sn−1 for any s. (We start with
positive integers and with s = 1/N , and then rational s, and then take a limit to
get all s.) Next if X is a finite union of (n-1)-cubes with various side lengths, we see
that V oln−1X = Crof(X).

Finally, given an arbitrary hypersurface X, we approximate X by Xcub - a fi-
nite union of (n-1)-cubes. We just have to check that V oln−1(Xcub) approximates
V oln−1(X) and that Crof(Xcub) approximates Crof(X).

Now using the Crofton formula, we can bound the volume of Z(P ) ∩ Bn. Note
that if l is any line which intersects Bn, then |Sn−1 ∩ l| = 2. The set of lines l with
l ⊂ Z(P ) has measure 0. So we see that for dµ almost every l ⊂ Rn,

|Z(P ) ∩ Bn ∩ l| ≤ (d/2)|Sn−1 ∩ l|.

Using the Crofton formula, we see that V ol n−1
n−1Z(P ) ∩ B ≤ (d/2)V olS . This

inequality is sharp for every even d by taking Z(P ) to be a union of d/2 spheres with
radii very close to 1. (The sharp argument and example were explained to me by
Jake Solomon.)

The second half of the theorem follows from the general ham sandwich theorem,
which we recall.

Theorem 0.8. (Stone-Tukey) If W is a vector space of continuous functions from
Bn to R, and U1, ..., UN ⊂ Bn are finite volume open sets, with N < dimW , and if
each function F ∈ W \ {0} has meas(Z(F )) = 0, then there is a non-zero F ∈ W
which bisects each set Ui.

In our case, dimW ≥ dimVn(d) ∼ dn. (If any non-zero F ∈ W has Z(F ) with
positive Lebesgue measure, then V oln−1Z(F ) is infinite.) We can apply the theorem.
We let U1, ..., UN be ∼ dn disjoint balls in Bn, each with radius ∼ d−1.
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A hypersurface which bisects the unit n-ball must have (n-1)-volume at least cn >
0. This fact follows, for example, from the isoperimetric ienquality. By scaling,
Z(F ) ∩ Ui must have (n-1)-volume at least cnd−(n−1). Therefore, V oln−1Z(F ) &

dnd−(n−1) = d.
To end this chapter, let’s mention a couple themes that appear in both the ge-

ometry today and the combinatorics we’ve been studying. We always exploit the
fundamental fact that a non-zero degree d polynomial in one variable vanishes at
most d times. Next we come to polynomials in several variables. This is a very large
space, and it has the simple but remarkable property that if we restrict a degree d
polynomial in several variables to a line, then we get a degree d polynomial in one
variable. So we get a lot of information about what the polynomial is doing on each
line. In both settings, we want to assemble that information to give global informa-
tion about what the polynomial is doing globally. In the geometric setting, integral
geometry gives an important tool for assembling the information, leading to some of
the geometric estimates above.

We’ve also seen the general ham sandwich theorem in both settings. The way it’s
applied is a little different, but the geometric theorem on efficiency of real polynomials
is still a kind of precursor for the approach in this chapter.



MIT OpenCourseWare
http://ocw.mit.edu

18.S997 The Polynomial Method
Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms



