
INTRODUCTION TO DIOPHANTINE EQUATIONS

In the early 20th century, Thue made an important breakthrough in the study
of diophantine equations. His proof is one of the first examples of the polynomial
method. His proof influenced a lot of later work in number theory, including dio-
phantine equations, transcendental number theory, and later exponential sums. In
this lecture, we will introduce some basic questions and conjectures and explain what
Thue proved.

1. Naive guesses about diophantine equations

The most famous diophantine equation is the Fermat equation xd + yd − zd = 0.
For d = 2 there are many integer solutions, and for d ≥ 3 there are no positive
integer solutions. The proof of the second part is extremely deep and hard. But is
there any simple reason to expect that this situation is likely? In this section, we
explore some naive guesses about diophantine equations.

Suppose that P is a homogeneous polynomial of degree d in n variables, with
integer coefficients. Let us consider the equation P (x) = A, for some integer A.
Let’s try to guess how many solutions this equation is likely to have. Let’s try to
guess the number of solutions of size |x| ∼ 2s.

Guess the size of the set{x ∈ n|P (x) = A, |x| ∼ 2s
Z }.

Notice that if |x| ∼ 2s, then |P (x)| . 2sd. It’s hard to say much else about P (x)
based on the information so far, so we make a primitive probabilistic model.

For each x ˜with |x| ∼ 2s, let P (x) be a random integer of norm ≤ 2sd. The
˜expected size of the set {x ∈ n

Z |P (x) = A, |x| ∼ 2s} is ∼ 2ns/2ds = 2(n−d)s. If the
polynomial P “behaved randomly”, then the set of solutions of size |x| ∼ 2s would
be ∼ 2(n−d)s. This suggests the following naive conjectures.

Naive conjecture 1. If degP < n, then the equation P (x) = A has infinitely many
integer solutions, and the number of solutions of size ∼ 2s is ∼ 2(n−d)s.

Naive conjecture 2. If degP > n, then the equation P (x) = A has only finitely
many integer solutions.

(The case degP = n is more delicate. Our heuristic gives that the number of
solutions of size ∼ 2s is ∼ 1, which would suggest infinitely many solutions. But
having no solutions would not be such a large departure from the estimate in the
heuristic...)
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These conjectures are both false, but they are still useful.
We give some counterexamples.
Consider the equation 2x + 2y = 1. Our model predicts it should have many

solutions, but it has none because the left-hand side is always even. Therefore, naive
conjecture 1 is false. (To fix this particular counterexample, we should also assume
that the equation has lots of solutions modulo p for some small primes p.)

Consider the equation (x2 + y2 − z2)10 = 0. This equation has degree 20 in 3
variables, but every Pythagorean triple is a solution. There are also examples in two
variables. The equation (x − y)10 = 1 has infinitely many solutions. The equation
x2−2y2 = 1 has infinitely many solutions (approximately one for each scale |x| ∼ 2s,
as predicted by the heuristic). Therefore, the equation (x2−2y2)10 = 1 has infinitely
many solutions. (We can rule out these particular counterexamples by insisting that
P is irreducible.)

Although the conjectures are false, they give some useful intuition. If the degree
d > n and there are infinitely many solutions, then that seems to be a big coincidence,
and one may hope that there is some structure that explains what is happening.

Two of the big achievements in diophantine equations from the early 1900’s confirm
this intuition. The circle method of Hardy-Littlewood proves that equations have lots
of solutions if the number of variables is much larger than the degree and if nothing
bad happens modulo p for small primes p. Thue proved that Naive Conjecture 2 is
actually true in two variables, as long as the polynomial is irreducible.

Theorem 1.1. (Thue) Suppose P ∈ Z[x, y] is a homogeneous polynomial with degree
≥ 3 which is irreducible (over Z). If A is any integer, then the equation P (x) = A
has only finitely many integer solutions.

2. Diophantine approximation

Thue actually proved an even stronger theorem about rational approximations of
algebraic numbers. To see the connection, let us consider the equation x3 − 2y3 = 7.
If (x, y) ∈ 2

Z solves this equation, then we see that

x
( )3 − 2 = 7y−3.
y

Therefore, x/y is a good approximation of the cube root of 2, especially if y is
large. A short calculation shows that

|21/3 x
− | . |y|−3.

y

These are really very good rational approximations. For context, consider the
following.
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Proposition 2.1. For any ǫ > 0, for almost every real number β, there are only
finitely many integer solutions to the inequality

x
|β − | ≤ |y|−2−ǫ. (∗)

y

(The proof is a standard exercise in measure theory. Consider all the β in an
interval so that (∗) has a solution with y > Y . This set is a union of intervals of
total length . Y −ǫ.)

Although it’s easy to prove this result for almost every β ∈ R, it’s hard to check it
for any particular β, say β = 21/3. Liouville gave the first estimates about diophan-
tine approximation of algebraic numbers.

Proposition 2.2. (Liouville, 1840’s?) If β is an irrational algebraic number and x
y

is a rational number, then

x
|β − | ≥ c(β)|y|−deg(β).

y

Recall that an algebraic number is a solution to a polynomial with integer coeffi-
cients. The degree degβ is the minimal degree of such a polynomial.

We will use a couple basic facts about algebraic numbers. There is actually a
unique minimal polynomial Q with Q(β) = 0. (Minimal here means that the degree
and the size of the coefficients are minimal.) The polynomial Q will be irreducible
over Z, and so it will have no rational roots. This polynomial also has Q′(β) = 0.

Proof. Notice that Q(x/y) is a non-zero rational number. The denominator can be
taken to be ydeg(β). Therefore, |Q(x/y)| ≥ |y|−deg(β). If x/y is very close to β, then

|Q(x/y)| = |Q(β) + Q′(β)(β − x/y)| + lower order terms ∼ |Q′(β)||β − x/y|.

�

For example, |21/3 − x | ≥ c|y|−3. This inequality is not strong enough to say
y

anything about the number of solutions of x3 − 2y3 = 7. If we look back inside
the proof of the Liouville inequality, it boils down to saying that x3 − 2y3 = 0
has no integer solutions and so |x3 − 2y3| ≥ 1. But this does nothing to constrain
the solutions of x3 − 2y3 = 7. However, an inequality even slightly stronger than
Liouville’s does constrain the solutions to diophantine equations.

Theorem 2.3. (Thue) If β is an irrational algebraic number, and γ > deg(β)+2 , then
2

there are only finitely many integer solutions to the inequality

x
|β − | ≤ |y|−γ.

y
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The diophantine approximation theorem implies the diophantine equations theo-
rem for the following reason. ...

3. Outline of Thue’s proof

In this section we outline Thue’s proof, and we explain how it is analogous to
other arguments we have seen. We recall the main steps in the polynomial method
by outlining the proof of the finite field Nikodym theorem.

Outline of the proof of finite field Nikodym: Suppose that N is a small Nikodym
set in n

F .

(1) Find a non-zero polynomial P with controlled degree that vanishes on N .
(Use parameter counting.)

(2) Because N is a Nikodym set, the polynomial P must also vanish at many
other points. (Vanishing lemma.)

(3) The polynomial P vanishes at too many points, so it must be zero. Contra-
diction.

Here is the outline of Thue’s proof. Suppose that the algebraic number β has two
very good rational approximations r1 and r2.

(1) Find a non-zero polynomial P ∈ Z[x, y] with controlled degree and coefficients
that vanishes to high order at (β, β). (Use parameter counting.)

(2) Because r1 and r2 are good approximations of β, the polynomial must also
vanish to high order at (r1, r2).

(3) The polynomial P vanishes too much at (r1, r2), and so it must be zero.
Contradiction.

The first step took Thue the longest to figure out. In the special case that β is the
dth root of a rational number, he constructed the polynomial P by hand with some
difficulty. In this way, we was able to prove his finiteness theorem only for equations
of the form Axd + Byd = C. After trying hard to construct the polynomial P for
other values of β, Thue realized that he could find it by parameter counting.

Another important point about Thue’s proof is that it uses two good rational
approximations r1 and r2. It might seem simpler to start with one rational approx-
imation r and try to get a contradiction. But it seems very difficult to do this. We
will come back to this point more later.

3.1. Final comment. Suppose that α and β are two algebraic numbers. Then α+β
is an algebraic number. Why? This is a bit in the same spirit as the polynomial
method...
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