
WHY POLYNOMIALS? PART 1
 

The proofs of finite field Kakeya and joints and short and clean, but they also 
seem strange to me. They seem a little like magic tricks. In particular, what is the 
role of polynomials in these problems? We will consider this question from several 
points of view all through the course. 

It would be interesting to know how hard it is to prove these results without the 
polynomial method. If there are other short proofs, it would be great to know about 
them. Perhaps they are less strange or strange in a different way. If it’s really hard 
to prove these results without the polynomial method, then there should be some 
reason. 

We’re going to try to ferret out the role of polynomials by thinking about different 
cousins of these problems. In this section, we’ll meet a key example, consider some 
mostly open problems, and state a result or two that we’ll return to later. 

1. Arrangements of lines with lots of intersection points 

Suppose we have L lines in R3 . How many intersection points can there be? There 
( )

are at most L 
2

intersection points, and this can be achieved by putting all the lines 
in a plane. 

What if we don’t allow ourselves to put all the lines in a plane? Suppose we have 
L lines in R3 with ≤ 10 lines in any plane. How many intersection points can there 
be? Remarkably, there can still be ∼ L2 . 

Our example uses a degree 2 algebraic surface defined by the equation z = xy. 
This surface contains many lines. For each y0, there is a ‘horizontal line’ h(y0) in the 
surface parametrized by γ(t) = (t, y0, y0t). And for each x0, there is a ‘vertical line’ 
v(x0) in the surface parametrized by γ(t) = (x0, t, x0t). Any horizontal line intersects 
any vertical line: h(y0) intersects v(x0) at (x0, y0, x0y0). Taking L/2 horizontal lines 
and L/2 vertical lines gives L2/4 intersections. Any plane intersects the surface in a 
degree 2 curve, and so any plane contains at most 2 of our lines. This surface is an 
example of a regulus, and we will study them more in later sections. 

This is a crucial example in combinatorial problems about intersecting lines. Clever 
examples don’t come only from subspaces and objects of linear algebra - they also 
come from low degree algebraic surfaces. Enlisting the aid of polynomials can help 
us to either find or rule out such examples. 

Continuing our questions, what if we don’t allow ourselves to put all the lines in 
a degree 2 surface either? Suppose that we have L lines in R3 with ≤ 10 lines in 

1 



2 WHY POLYNOMIALS? PART 1 

any plane or degree 2 algebraic surface. How many intersection points can there 
be? This is an open question, which looks quite important to me. We do know that 
there are significantly less than L2 intersections. The best known estimate is that 
the number of intersections is ≤ CL3/2, and we will prove it later. 

The best example that I know has about 4L intersections. The set of lines in R3 

is a 4-dimensional manifold. So choosing L lines gives us 4L parameters to play 
with. If we want one particular line to intersect another, that gives us one equation 
that our parameters have to satisfy. Just counting parameters, one might guess that 
it’s not hard to find examples with 4L intersections, and that examples with more 
intersections require some type of “coincidence” or “conspiracy”. Given four lines 
in general position, we will see later that there is a line which meets all four. Using 
this fact, it’s straightforward to give examples with nearly 4L intersections. 

2. Variations of the joints problem 

Last lecture, we proved that L lines in R3 determine ≤ 10L3/2 joints. Now we will 
consider various special cases and/or generalizations of this problem, trying to see 
why the problem is hard without polynomials and what the role of polynomials is. 

We begin by recapping the proof. The key step was the following lemma. 

Main Lemma. If a set of lines has J joints, then one of the lines contains ≤ 3J1/3 

joints. 

The main lemma implies the theorem by removing the lines one at a time. We 
start with L lines and J joints. By cutting out one line, we reduce the number of 
joints by ≤ 3J1/3 . We look at the remaining lines L − 1 lines, which contain ≤ J 
joints. One of the lines has ≤ 3J1/3 joints on it. Removing this line, we reduce the 
number of joints by ≤ 3J1/3 . We remove all L lines, one at a time. Each time the 
number of joints decreases by ≤ 3J1/3, and we end up with no joints. Therefore, 
J ≤ L(3J1/3). Rearranging we get J2/3 ≤ 3L, which implies the theorem. 

An important special case of the joints theorem is the axis-parallel case, when each 
line is parallel to one of the coordinate axes. This case was studied by Loomis and 
Whitney in the early 50’s, and they proved a sharp estimate for the possible number 
of joints. We now present a proof of the axis-parallel case more or less following their 
ideas. It suffices to prove a version of the main lemma for axis parallel lines. 

Lemma 2.1. Suppose that L is a set of L lines in R3, each parallel to one of the 

≤ J1/3coordinate axes. If L determines J joints, then one of the lines contains 

joints. 

Proof. Suppose that each line contains > J1/3 joints. Let Lj ⊂ L be the set of lines 
parallel to the xj axis. Start with a line in L1. It contains > J1/3 joints. Each of 
these joints lies on a line of L2, giving > J1/3 disjoint lines of L2. Each of those lines 
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contains > J1/3 joints, giving > J2/3 joints all together. These joints all lie in a plane 
parallel to the x1 −x2 plane. Therefore, each of these > J2/3 joints lies on a different 

line of L3. So we have > J2/3 disjoint lines of L3. They each contain > J1/3 joints, 
for a total of > J joints. This gives a contradiction. D 

It seems to be difficult to generalize this argument to the joints problem. It even 
seems difficult to adapt it to a small perturbation of the axis parallel case. Suppose 
that Lj is a disjoint set of lines with angle < α to the xj axis, and let L be the union 
of the Lj . Even if α is small, say α = 1/1000, it seems hard to adapt the above proof 
to this case. The problem happens at the italicized word ‘different’. If the lines are 
not quite parallel to the axes, then some of the > J2/3 joints may lie on the same 
line of L3. The strength of this effect seems hard to bound. 

If we begin with axis parallel lines, and tilt them just slightly, than the problem 
gets a lot harder. For another perspective, we can consider bending the parallel lines 
slightly, leading to nearly axis parallel curves. Suppose that Γj is a (possibly disjoint) 
set of curves with tangent vectors always maintaining an angle < α to the xj-axis. 
Let Γ be the union of the Γj. Define a joint of Γ to be a point that lies in one curve 
from each Γj . If we have L curves, how many joints can we make? A priori, the 
answer may depend on both α and L. 

This problem is basically open. For a fixed small α, say α = 1/1000, do we get 
≤ CL3/2 joints? I don’t know any examples with more joints. The angle condition 
guarantees that a curve in Γi and a curve in Γj intersect in at most 1 point for 

(

L
)

i  j, and so the number of joints is ≤ 
2

. Even a bound like L1.99 would be = ∼ L2 

interesting. Also, the bound may depend on α. 
For a simple geometric argument, it may be difficult to distinguish the nearly 

axis-parallel lines from the nearly axis-parallel curves. It may turn out that nearly 
axis-parallel curves can have significantly more than L3/2 joints. This would offer an 
explanation of the use of polynomials in the proof of the joints theorem: polynomials 
treat straight lines and nearly straight curves very differently. On the other hand, 
it may turn out that the L3/2 estimate extends to nearly axis-parallel curves, which 
would give a significant new point-of-view about the joints theorem. 

3. Examination of the key facts we used 

In the polynomial method, we get a lot of mileage out of two rather simple facts 
about polynomials. 

(1) In n-dimensional space F
n, the dimension of the space of polynomials of 

degree ≤ d is ∼ dn/n!. 
(2) If a polynomial of degree ≤ d vanishes at d + 1 points on a line, then it 

vanishes on the whole line. 
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The first bullet says that there are lots of polynomials. This gives us a lot of 
flexibility to find a polynomial with certain properties. There are lot of ways that 
polynomials can behave on the whole space Fn . The second bullet says that the 
behavior of a polynomial on a line is comparatively limited. If we restrict the poly­
nomials of degree ≤ d to a line, then we get a vector space of dimension d + 1 of 
possible functions on the line. This dimension is much smaller than the dimension 
of the space of polynomials of degree ≤ d on all of Fn . In summary, polynomials can 
behave in many ways on the whole space, but in comparatively few ways on a line. 
The gap between dn/n! and d + 1 gives us a kind of “leverage”. In some sense we 
would like to make this gap as large as possible. 

Let W (d) be a vector space of functions from Fn to F, for some field F. We say 
that W (d) obeys the degree d vanishing lemma if, for any f ∈ W (d), if f = 0 at 
d + 1 points of a line, then f = 0 at every point on the line. 

Question: What is the maximum possible dimension of a vector space of functions 
from Fn to F which obeys the degree d vanishing lemma? 

Exercise. Using a (d + 1) × ... × (d + 1) grid of points, prove that the dimension 
is ≤ (d + 1)n . 

I conjecture that the maximum dimension is achieved by the polynomials of degree 
≤ d. 

Are there examples of W (d) with dimension > d1+ǫ which are not polynomials? 
Next one may replace lines by some other subsets of Fn and ask again about the 

dimension of space of functions satisfying the vanishing lemma. Little or nothing is 
known about this... 
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