1 Incidence Geometry

Topic: take a bunch of simple shapes like circles or lines, and study how they can intersect each
other.

Definition 1.1. If L is a set of |L| lines in R2, let Py(L) be the set of points lying in at least k
lines, called k-fold intersections; then we can ask what the maximum value of Py (L) in terms of k
and |L| is.

For example, we can get Py(L) = |L|/k trivially by dividing the lines into sets of k£ and inter-
secting each set.

In an N x N grid of pomts let L be the set of lines that contain between R and 2R points.
Then there are at most 9( ) lines of those lines through each point: in any such line, the closest
point to x must lie in a square of sidelength % centered at . We claim that there are at least
9(%—22) of those lines through each point, too: each of the points in the quarter of that square of
sidelength % closest to the center of the grid determines a line that contains at least R points, and
by the following lemma, a constant fraction of them are distinct and contain not too many points:

Lemma 1. For all B, there are more than 100B2 integer pairs (z,y) € [g, }52 with ged 1

Proof Throw out the + 7 bairs where both are divisible by 2, the & g divisible by 3, and so on.
15+ <1 D
If k is the smallest degree of any grid point, then k is about &5, |Py| > N2, and |L| = |Py|k/R =

so |Py| = |L|?k~3.
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Proposition 1.2. Vk € [\/|L|], there’s a configuration such that |Py| > cL>K 3.

In the early 1980s, it was proven that one of the two bounds above is tight up to a constant
factor:

Theorem 1.3 (Szemerédi, Trotter). For some constant ¢, |Py| < ¢ ('L‘ + B l )

If k > \/|L]|, the first term dominates; if k& > /L, the second term dominates.

Proposition 1.4. |P;| < (( )) <2L%k?
2

Proof. There are ( ) pairs of lines, and V& € Py, there are at least ( ) pairs of lines that intersect
at x. L]

Proposition 1.5. Prop: If% > |L|, then |Pxk| < %



Proof. Suppose not. Restrict to a subset P of size % For all x € P, there are at least

through x that don’t contain any other points of P, so |L| > |P|§ = %2. L]
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Proposition 1.6. If |L| < %, then | Py| < 2%.

lines
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Proof. Suppose not. By the last proposition, |Px| < % For all z € P, there are at least
through = that don’t contain any other points of P, so |L| > |Py|%, as desired. U

So far, we’ve only used the fact that two lines intersect in at most one point. But that can’t
be enough to prove the Szemerédi-Trotter Theorem, because in a finite field Fg, we could take
all the lines: that gives |L| = ¢> + ¢ and k = ¢ + 1, which violates the Szemerédi-Trotter upper
bound. (Note that in that case there’s a phase transition around k = +/|L], from |P;| = \/|L]| to
(Pl = |L])

The extra fact we’ll use is some topology, specifically the Euler characteristic. Take a large disc
containing all the intersections and let Vj,; and Fj;,; be the interior vertices and edges; there are
also 2|L vertices and 2|L| edges along the boundary of the disc. Every edge is in at most two faces
(1 if along the boundary) and every face contains at least three edges, so 3|F| < 2|E;n| + 2|L],
80 |Eint] < 3|Vipt| + 2|L|. Hence Zvevmt(%deg(v) —3) < 2L (in fact, it’s at most L). If every

2L .

intersection had multiplicity at least 3, then |Py| < 2=5;

because intersections might have multiplicity 2.
K5 isn’t planar, since 10 = |E(K5)| > 3|V (K5)| —6 =9.

we need to figure out a stronger argument

2 Crossing Numbers of Graphs

If G is a graph, a legal map F into the plane takes vertices to distinct points and edges to curves
between their endpoints’ points.

The crossing number of F' is the number of pairs of edges’ curves that intersect, and the
crossing number of a graph is the minimum crossing number over legal embeddings. For instance,

CON(K3) = 1.
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