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Reading: 

• Nise: Secs. 2.2 and 2.3 (pp. 32 - 45) 

1 The Laplace Transform 

The reason that the Laplace transform is useful to us in 2.004 that it allows algebraic 
manipulation of ordinary differential equations 
1) Solution of ODE’s is “difficult”, so 
2) Transform the problem to a “domain” where the solution is easier. 
3) Solve the problem in the new domain. 
4) Perform the “inverse” transform to move the solution back to the original domain (if we 
need to). 

Definition: The “one-sided” Laplace transform is an integral transform defined as 
� ∞

F (s) = L{f(t)} = f(t)e−stdt 
0− 

It maps the function f(t) to a function of the complex variable s = σ + jω (j = 
√−1), and 

F (s) is itself generally complex. We also write 

f(t) = L−1 {F (s)} 
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1.1 Some Common Examples Used in Control Theory: 

(a) The unit step function: us(t): 

� ∞ 1
[e−st]∞

1 
Us(s) = 

0− 

1e−stdt = −
s 0− = 

s 

(b) The one-sided exponential f(t) = us(t)e
−at (a > 0) 

1
� ∞ 

e−at e−stdt =F (s) = 
0− s + a 

(c) A very brief with unit area: 

1 
� T 

F (s) ≈ 
T 0− 

1dt = 1 

As T 0, the amplitude becomes very large and we define the Dirac delta (or impulse) →
function δ(t) as: 
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•	 �δ(t) = 0 for all t = 0 

• δ(t) is undefined (infinite) at t = 0 � ∞ 
δ(t)dt = 1 (unit area). • −∞


and L{δ(t)} = 1 from above.


1.2 The Inverse Laplace Transform 

If F (s) = L{f(t)}, then f(t) = L−1{F (s)} where L−1 denotes the inverse transform. In 
general L−1{} requires integration along a contour in the complex s = σ + jω plane, parallel 
to the imaginary axis. This is rarely done in practice. 

Instead, break up F (s) into a sum of functions with known L−1{}, and use table lookup, 
for example: 

Example 1 

Find the inverse Laplace transform of 

4 
F (s) = . 

s2 + 5s + 6 

4 4 4 4 
F (s) = 

s2 + 5s + 6 
=

(s + 3)(s + 2) 
= 

s + 2 
− 

s + 3 
(partial fractions) 

and since Le−at = 1 , we recognize 
s+a 

� 
4 

� � 
4 

�
f(t) = L−1 {F (s)} = L−1 

s + 2 
− L−1 

s + 3 
= 4e−2t − 4e−3t 

Note: See Nise for treatment of repeated roots 

1.3 Properties of the Laplace transfrom: 

We will discuss only the major properties that are useful in 2.004: 

(a) Linearity:	 If F (s) = L{f(t)} and G(s) = L{g(t)} then 

L{af(t) + bg(t)} = aF (s) + bG(s) 

where a and b are constants

The linearity property is fundamental to our treatment of ODE’s and linear systems.


3–3 



f ( t )

t

f ( t - t )

tt0

(b) Time Shift: If F (s) = L{f(t)} then


L{f(t − τ)} = e−sτ F (s) 

This is an important property in control theory because pure delays affect system 
stability under feedback control. 

(c) Differentiation Property:	 If F (s) = L{f(t)}, then 

df L{ 
dt 
} = sF (s) − f(o−) 

d2f L{ 
dt2 

} = s 2F (s) − sf(o−) − ḟ(0)


and

n

L{ 
d

dt

n

n 

f } = s nF (s) − 
� 

s n−kf (k−1)(0) 
k=1 

This is perhaps the most important property in this course. 

(d) Integration property: If F (s) = L{f(t)}, 
t� 

1 L{ 
0 

f(σ)dσ} = 
s
F (s) 

(e) The Final Value Theorem: If F (s) = L{f(t)}, then


lim f(t) = lim sF (s) 
t→∞ s→0 

provided the limit exists. The f.v. theorem is useful for determining the steady-state 
response of systems. 

2 Laplace Domain System Representation 

Suppose that through modeling we have found that a system is described by a differential 
equation 

dny dn−1y dy dmu dm−1u du 
an 

dtn 
+ an−1 

dtn−1 
+ . . . + a1 

dt 
+ a0y = bm 

dtm 
+ bm−1 

dtm−1 
+ . . . + b1 

dt 
+ b0u 
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Assume that the system is “at rest” at time t = 0, that is y(0) = 0, ẏ(0) = 0, etc. and that 
u(0−) = 0, u̇(0−) = 0, etc then using the differentiation property of the Laplace transform 
on each term in the ODE gives: 

ans nY (s) + an−1s n−1Y (s) + . . . + a0Y (s) = bms mU(s) + bm−1s m−1U(s) + . . . + b0U(s) 

[ans n + an−1s m + bm−1s n−1 + . . . + a0]Y (s) = [bms m−1 + . . . + b0]U(s) 

and solving for Y (s) 

bmsm + bm−1s
m−1 + . . . + b0

Y (s) = U(s) = H(s)U(s) 
ansn + an−1sn−1 + . . . + a0 

where H(s) is defined as the system transfer function. 

bmsm + bm−1s
m−1 + . . . + b0 N(s)

H(s) = = 
ansn + an−1sn−1 + . . . + a0 D(s) 

where numerator coefficients come from the RHS of the ODE and the denominator coeffi­
cients come from the LHS. H(s) is a rational fraction for most linear systems. 

The Laplace transform (transfer function) has changed the system represen­
tation to from an ODE to an algebraic representation with a multiplicative 
input/output relationship. 

In system dynamics and control work we use the transfer function as the primary system 
representation. 
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Example 2 

Find the transfer function of a system represented by the ODE: 

d3y d2y dy du 
5 + 17 + 6 + 5y = 8 + 6u 

dt3 dt2 dt dt 

Answer: 
8s + 6 

H(s) = 
5s3 + 17s2 + 6s + 5 

Note: A fundamental assumption when using the transfer function to compute 
responses is that the system is “at rest” at time t = 0. 

Example 3 

Find the response V (s) of the velocity of the mass element shown below to a unit 
step the applied force F (t) 

From the differential equation 

(ms + B)V (s) = F (s) 

1 
V (s) = F (s). 

ms + B 

For a unit-step in the force F (t) , F (s) = 1/s and 

1 1 B B 
V (s) = 

ms + B 
× 

s 
= 

s 
− 

s + B/m 

Taking the inverse Laplace transform gives the response 

B 
mv(t) = L−1 {V (s)} =

1 �
1 − e− t

� 

B 
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Example 4


Find the transfer function relating: a) x(t), b) v(t) to F (t) for the system 

F  ( t )
m

m a s s
s p r i n g
K

Bd a m p e r

v ( t )
x ( t )

a) From a force balance 
mẍ + Bẋ + Kx = F. 

By inspection 
X(s) 1 

H(s) = = 
F (s) ms2 + Bs + k 

b) Since v(t) = dx/dt, 
t 

mv̇ + Bv + K vdt = F 
0 

or 
mv̈ + Bv̇ + Kv = Ḟ

and 
V (s) s 

H(s) = = 
F (s) ms2 + Bs + K 

Example 5 

Find the transfer function of the electrical circuit 

What we know: 

(1) 
Vin(t) = vc + vr (KVL) 
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(2) 

vo = vR = 
1 
R 

iR 

(3) 
iR = ic (KCL) 

From (1): 

t1 
�

Vin(t) = vc + vR = icdt + vR
C 0 

Differentiate and use (2): 

1 1 
V̇in(t) = iC + v̇R = vR + v̇R

C RC 
Use vo = vR to obtain: 

V̇in(t) = 
1 

vo + v̇o. 
RC 

Take the Laplace transform of both sides, and use the derivative property to give 

Vo(s) RCs 
H(s) = = 

Vin(s) RCs + 1 
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