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Reading: 

Nise: Sec. 2.5 • 

1 Thévenin and Norton Source Models 

We state the following without proof: 

Any linear system (regardless of its internal complexity) containing a single source (voltage 
or current), and with an external load element ZL, may be modeled as either 
(a) A voltage source Vth with a series impedance Zo (a Thevénin equivalent circuit), or 

(b) A current source IN with a parallel impedance Zo (a Norton equivalent circuit). 

The arbitrary system shown above can be represented in either form, where 

Zo – is the system output impedance, and is the same in each case. 

Vth 

1copyright 

– is the Thévenin source voltage 
circuit” terminal voltage. 

c� D.Rowell 2008 

– found by removing Zo and measuring the “open­
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IN – is the Norton source current – found by “short-circuiting” the output and measuring 
the current. 

To find the output impedance Zo – set the internal source to zero, and measure the input 
impedance at the system’s output terminals. Some care must be taken in setting any source 
to zero: 

(a)	 To set a voltage source to zero, short-circuit it, for example to find Zo in the circuit 
below: 

1 R 
Zo = 

Cs
�R = 

CRs + 1 
The Thévenin source voltage is found by recognizing the left-hand circuit as a voltage-
divider and finding the terminal voltage: 

1/(Cs) 1 
Vth = Vs = Vs

R + 1/(Cs) RCs + 1 

The complete Thévenin equivalent for this system is: 
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(b) To set a current source to zero, remove it from the circuit as shown below:


In this case the output impedance seen at the output terminals is 

1 
Zo = 

Cs 

and the Norton short circuit current is simply 

IN = I 

(Note that R does not appear in the system formulation.) The Norton equivalent is: 

Example 1 

Use Thévenin and Norton source models to find the transfer function of the 
following system when the load is an inductor L. 

Vo(s)
H(s) = 

V (s) 

Thévenin Model: For the source model on the left 

1/(Cs) 1 
Vth = = 

R + 1/(Cs) RCs + 1 

1 R

Zo = 

Cs
�R = 

CRs + 1

Then for the full system on the right
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Using a voltage divider relationship 

Ls 
Vo(s) = Vth(s)

Ls + R/(CRs + 1) 
Ls(RCs + 1) 1 

= . V (s). 
RLCs2 + Ls + R RCs + 1 

The transfer function is 

Vo(s) Ls 
H(s) = = 

V (s) RLCs2 + Ls + R 

Norton Model: For the Norton model


1 1 R 
IN = isc = V, Zo = R� = 

R Cs RCs + 1 
and the equivalent system model is 

Then the transfer function is found from 

Vo(s) = 

�
Zo� 

1 
Cs 

� 

IN (s) 

RLs 1 
= V (s)

Ls + R/(RCs + 1) R 
Ls 

= V 
RLCs2 + Ls + R 
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As with the Thévenin method, the transfer function is


Vo(s) Ls 
H(s) = = 

V (s) RLCs2 + Ls + R 

2	 Modeling Mechanical Systems 

We now move our attention to deriving models of mechanical systems with motion in one 
dimension. The approach will be to draw analogies with the electrical modeling methods so 
as to have a unified technique that can be applied without regard to the energy domain. 

(1) Choice of Modeling Variables:	 As in the electrical domain, we select a pair of 
variables whose product is power, that is we choose F – force (N), and v – velocity 
(m/s) since 

P = Fv 

(2) Modeling Elements:	 As in the electrical domain we find there are two energy storage 
elements, and one dissipative element. 

(a) The mass element. 

For a mass element m 
dp dvm

Fm = = m 
dt dt 

where p is the momentum. We will use the elemental relationship 

dv 1 1 
= F or V (s) = F (s)

dt	 m ms 

The energy stored in a moving mass element is 
t� 

1 2E = Pv dt = mv 
2−∞ 

which is a function of velocity v and is stored as kinetic energy. 

Note: Inertial forces and velocities must be measured with respect to a non-
accelerating inertial reference frame. In this course we will assume a reference 
velocity vref = 0. 
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Let xspring = (x2 − x1) − xo where xo is the “rest length” of the spring. Then 

dxspring dx2 dx1 
vspring =

dt 
=

dt 
− 

dt 
= v2 − v1 

From Hooke’s law,

F = Kxspring


where K is the stiffness (N/m).


dFK K 
= KvK or FK (s) = vK (s)

dt s 

The energy stored in a moving mass element is 

t� 
1 

E = Pv dt = FK 
2 

2K−∞ 

which is a function of velocity FK and is stored as potential energy. 

(c) The viscous friction (dissipative) element:	 (Also known as the dashpot or 
damper element) 

Let VB = v2 − v1, the elemental equation is


FB = BvB
 or FB (s) = BvB (s) 

The power flow is 
P = Fv = Bv2 ≥ 0 

so that the power flow is uni-directional and cannot be recovered. 

(3) Ideal Sources: We define a pair of ideal sources 

(a) Force Source:	 The force source maintains a prescribed force Fs regardless of 
the velocity at which it travels. 
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(b) Velocity Source:	 The velocity source maintains a prescribed velocity Vs re­
gardless of the force required to maintain that velocity. 

Interconnection Rules: 

(a) Continuity: Consider a mass element with n external forces acting on it: 

n� 
Fi = m 

dvm 

dt 
i=1 

or 
n� 

Fi − m 
dvm 

= 0 
dt 

i=1 
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N o t e :   O n  a  b r a n c h  r e p r e s e n t i n g
a  m a s s  e l e m e n t ,  t h e  a r r o w  a l w a y s  
p o i n t s  t o  t h e  i n e r t i a l  r e f e r e n c e  n o d e .

If we substitute a fictitious force Fm = m dvm/ dt (known as a d’Alembert force) we 
van write 

n� 
Fi − Fm = 0 

i=1 

and state the following 

The sum of all forces acting on a mass element (including the d’Alembert 
force) is zero. 

If we represent a point in space containing a mass element as a node on a graph, and 
the forces acting on the node as branches, where an arrow pointing at the node means 
that positive force acts to accelerate the node in the reference direction. 

We can write 
F1 + F2 − F3 = Fm = 0 

The node represents a point in a mechanical system with a distinct velocity. 

The continuity condition for a mechanical system is equivalent to Kirchoff’s 
current law in an electrical system. 

Example 2 

The system 

may be drawn as a graph: 
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Notice the arrow directions on the branches - as implied by the right hand 
figure above. The graph implies a pair of continuity equations at the two 
nodes: 

dv1 −FK − FB − Fm1 = 0 or − FK − FB = m1 
dt 

dv2
FK + FB − Fm2 = 0 or FK + FB = m2 

dt 

For a “massless” node (that is at the interconnection of n ideal massless elements) 

n� 
Fi = 0 

i=1 

For example 

implies FK − FB = 0 at the junction. 
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