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Reading: 

• Class Handout: Modeling Part 2 – Summary of One-Port Primitive Elements 

1	 Generalized System Representation 

In the electrical and mechanical systems we have defined, and used, two power variables 
(variables whose product is power): 

Electrical 
P = vi, where 
v – voltage drop 
i – current 

Mechanical 
P = Fv, where 
v – velocity drop 
F – force 

We have also developed a common graph notation to express the system topology, and have 
used extensions to Kirchoff’s laws to draw analogies between pairs of system variables: 

(1) voltage drop and velocity drop, and 

(2) current and force.


In addition, we drew analogies between the primitive modeling elements in each domain:


(1) capacitors and masses


(2) inductors and springs


(3) resistors and dampers.


We now look at generalizing these associations.


Variables: In each energy domain we will class the two power variables as either:


(a)	 Those variables that are defined by measuring a difference, or drop, across an element, 
that is between nodes on a graph (across one or more branches). These variables sum 
to zero around any closed loop on the graph (they satisfy the compatibility conditions). 
These variables are defined to be across-variables . 

The two across variables we have defined so far are (i) velocity drop in mechanical 
systems, and (ii) voltage drop in electrical systems.


Example: To measure voltage drop in an electrical circuit you must connect a volt­ 

meter across an element:
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(b)	 Those variables that are measured through an element, that is are considered as being 
transmitted through an element unchanged. These variables sum to zero at the nodes 
on a graph, and are said to satisfy the continuity condition. They are defined to be 
through variables . 

The through variables defined so far are (i) current in electrical systems, and (ii) force 
in mechanical systems.


Example: to measure force in a mechanical system, or current in an electrical system

a sensor mus be inserted in series with an element.


Generalized Variables: In dealing with generalized modeling power variables, without 
regard for a particular energy domain we now define 

• A generalized across variable, designated v, and 

• A generalized through variable, designated f . 

We also generalize the constraints on across and through variables imposed by the structure 
of a system’s graph: 

• The compatibility condition 
n� 

vi = 0 around the n elements in any loop on a graph 
i=1 

which is clearly a generalization of Kirchoff’s voltage law, and 

• The continuity condition 
n� 

fi = 0 in the n elements connected to any node on a graph 
i=1 

which is clearly a generalization of Kirchoff’s current law. 
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Generalized Sources: Along with the generalized variables we define a pair of ideal sources 

(1) The Across Variable Source:	 An across variable source maintains the across vari­
able between the nodes it is connected to, regardless of the magnitude of the through 
variable supplied to the system. 

The examples we have seen so far are the voltage source in electrical systems, and the 
velocity source in mechanical systems. 

(2) The Through Variable Source:	 An through variable source maintains the through 
variable into the nodes it is connected to, regardless of the magnitude of the across 
variable it must generate to maintain its through variable. 

The examples we have seen so far are the current source in electrical systems, and the 
force source in mechanical systems. 

Generalized Elements: We have seen that in each of the energy domains studied so 
far we have defined three primitive modeling elements: two energy storage elements and 
a dissipative element. We now classify these elements according to (i) the variable that 
accounts for the stored energy in energy storage elements, and (ii) we group together the 
dissipative elements. 

A-Type Elements These are the energy storage elements in which the stored energy is a 
function of the across-variable. 
Electrical: For a capacitor, let v = va − vb be the across variable: 

dv 
i = C 

dt 

E = 
� t 

vi dt = 
� t 

Cv dv 

= 

−∞
1 
Cv2 

0 

2 
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which defines the capacitor as an A-type element.


Mechanical: For a mass element 

dv 
F = m 

dt 

E = 
� t 

vF dt = 
� t 

mv dv 

= 

−∞
1 
mv 2 

0 

2 

which defines the mass element as an A-type element. 

Define a generalized capacitance C that represents A-type elements inde­
pendent of the energy domain, and write its elemental equation in terms of 
generalized across and through variables: 

A-Type elements may be summarized as in the following table:


Element Elemental equation Energy 

Generalized A-type f = C 
dv 
dt 

E = 
1 
2 
Cv2 

Translational mass 

Electrical capacitance 

F = m 
dv 
dt 

i = C 
dv 
dt 

E 

E 

= 

= 

1 
2 
mv 2 

1 
2 
Cv2 

T-Type Elements These are the energy storage elements in which the stored energy is a 
function of the through-variable. 
Electrical: For a inductor, let v = va − vb be the across variable: 

di 
v = L 

dt 

E = 
� t 

vi dt = 
� t 

Li di 

= 

−∞
1 
Li2 

0 

2 
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which defines the inductor as an T-type element.


Mechanical: For a spring element 

1 dF 
v = 

K dt 

E = 
� t 

vF dt = 
1 

� t 

F dF 

= 

−∞
1 

F 2 

K 0 

2K 

which defines the spring element as an T-type element. 

Define a generalized inductance L that represents T-type elements indepen­
dent of the energy domain, and write its elemental equation in terms of 
generalized across and through variables: 

T-Type elements may be summarized as in the following table:


Element Elemental equation Energy 

Generalized T-type v = Ldf/dt E = 
1 
2 
Lf2 

Translational spring 

Electrical inductance 

v = 
1 
K 

dF 
dt 

v = L 
di 
dt 

E = 
1 

2K 
F 2 

E = 
1 
2 
Li2 

D-Type Elements These are the dissipative elements (non-energy storage, the power 
flow is always into the element). 

Electrical: For a resistor, let v = va − vb be the across variable: 

v = iR 

P = vi = i2R = v 2/R 

≥ 0 
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which defines the resistor as an D-type element. 

Mechanical: For a damper element 

F = Bv 

P = vF = Bv2 = F 2/B 

≥ 0 

which defines the damper element as an D-type element. 

Define a generalized resistance R that represents D-type elements indepen­
dent of the energy domain, and write its elemental equation in terms of 
generalized across and through variables: 

D-Type elements may be summarized as in the following table:


Element Elemental equations Power dissipated 

Generalized D-type f = 
1 
R 

v v = Rf P = 
1 
R 

v 2 = Rf2 

Translational damper 

Electrical resistance 

F = Bv 

i = 
1 
R 

v 

v = 
1 
B 

F 

v = Ri 

P = Bv2 = 
1 
B 

F 2 

P = 
1 
R 

v 2 = Ri2 

Generalized Impedances: The generalized impedance of an is


V (s)
Z = 

F (s) 

where V (s) and F (s) are the Laplace domain representation of the generalized across and 
through variables. The impedances are summarized in the following table: 

A-Type T-Type D-Type 

Generalized 
1 

Cs 
sL R 

Translational 
1 1 

s 
1 

sm K B 
1 

Electrical 
Cs 

sL R 
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2	 Notes on Transfer Function Generation 

The system order (highest order derivative on the l.h.s. of the differential equation, or the 
highest power in s in the denominator of the transfer function) is determined by the number 
of independent energy storage elements in the system. 

An independent energy storage element is one whose stored energy is not directly propor­
tional to the energy stored in other elements or completely defined by the system sources. 
For example, in the following figure the two springs are not independent energy storage ele­
ments, because their stored energies are directly related. Therefore this system will generate 
a second-order differential equation even though there are three energy storage elements. 

similarly, in the following figure the velocities of the two masses are related by the lever, and 
they are not independent energy storage elements. 

Another situation where an energy storage element does not increase the order of a system 
is when the stored energy is completely defined by a source. 

(a)	 Any element connected directly in parallel with an across variable source will not 
affect the system dynamics, and in fact will not appear in the differential equation (or 
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transfer function). The reason is that the source completely defines the across variable 
at its two nodes, and therefore the element can be removed without affecting the rest 
of the system. For example in the following system the output is the velocity of the 
mass m2. The system input is a velocity source V applied to the mass m1. The velocity 
at the left-hand node is completely defined by the source, and would not be affected if 
m1 was removed from the system. The transfer function relating vm2 to V is 

Vm2 (s) K/m2
H(s) = = 

V (s) s2 + K/m2 

and does not involve m1. 

(b)	 Any element connected directly in series with a through variable source will not affect 
the system dynamics. The through variable transmitted from the source to the rest of 
the system will be unchanged by the presence of the series element(s). In the electrical 
system below the resistance R1 and the inductor L are in series with the current 
source I. Since iL = I, the current supplied to the right-hand node is unaffected by 
the presence if either L or R1, and this is effectively a first-order system. 
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