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Lecture 14!

Reading:

e C(Class Handout: Modeling Part 1: Energy and Power Flow in Linear Systems
Sec. 3.

e C(Class Handout: Modeling Part 2: Summary of One-Port Primitive Elements

1 The Modeling of Rotational Systems.

With the the modeling framework as we defined it in Lecture 13, we have seen that in each
energy domain we need to define

(a) Two power variables, an across variable, and a through variable. the product of these
variables is power.

(b) Two ideal sources, and across variable source, and a through variable source.

(c) Three ideal modeling elements, two energy storage elements (a T-type element, and a
A-Type element), and a dissipative (D-Type) element.)

(d) A pair of interconnection laws.
We now address modeling of rotational mechanical systems.

(a) Definition of Power variables: In a rotational system we consider the motion of a
system around an azis of rotation:

QT

Consider the rotary motion resulting from a force F' applied at a radius r from the
rotational axis
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The work done by the force F' in moving an infinitesimal distance Ax is
AW = FAx = Fr6

and the power P is

= dAW = Frﬁ =T0Q

P
dt dt

where T" = F'r is the applied torque (N.m), and 2 = df/dt is the angular velocity
(rad/s).

We note that if 7" and €2 have the same sign, then P > 0 and power is flowing into
the system or element that is being rotated. Similarly, if 7" and €2 have the opposite
signs, then P < 0 and power is flowing from the system or element, in other words the
system is doing work on the source.

Note that the angular velocity €2 can be different across an element, but that torque
T is transmitted through an element:

Angular velocities 07 and Q2 can be
different across an element.

The torque T transmitted through an
element is constant.

Q. T

We therefore define our power variables as torque 7" and angular velocity €2, where
e T’ is chosen as the through variable
e () is chosen as the across variable.

(b) Ideal Sources: With the choice of modeling variables we can define our pair of ideal

sources

The Angular Velocity Source: ((t)

By definition the angular velocity source is an across variable source. The ideal angular
velocity source will maintain the rotational speed regardless of the torque it must
generate to do so:
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Qg

Qa
arrow shows direction angular velocity Q is
of assumed ang. vel. independent of torque T
drop. -
Q Q, >Q,
[e) »
b 0 torque

The Torque Source: T(t)
By definition the torque source is a through variable source. The ideal torque source
will maintain the applied torque regardless of the angular velocity it must generate to

do so:
Q4 Torque Ti}s independent
of angularvelocity Q
arrow shows direction
T of torque.
0 torque

(c) Ideal Modeling Elements:
1 The Moment of Inertia: Consider a mass element m rotating at a fixed radius
R about the axis of rotation.

The stored energy is

m
1 1
E=-m(rQ)? = =JO?
N 2 (r2) 2
where J = mr? is defined to be the mo-
o ment of inertia of the particle.
For a collection of n mass particles m; at radii r;, ¢ = 1,...,n, the moment of inertia

1S

n

2

J = E m;rsy.
i=1
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For a continuous distribution of mass about the axis of rotation, the moment of inertia
is

Q
R
J = r2dm
mass dm at 0
radius r

Examples:

A uniform rod of length L / ! J=%L2

rotating about its center. where m is the mass

/ of the rod

) . . ) 1
A uniform disc with radius r J=5mr?
rotating about its center. where m is the mass
of the disk

The elemental equation for the moment of inertia J is

dQ2;
dt

T,=J

We note that the energy stored in a rotating mass is £ = JQ?/2, that is it is a function
of the across variable, defining the moment of inertia as an A-type element.

As in the case of a translational mass element, the angular velocity drop associated
with a rotary inertia J is always measured with respect to a non-accelerating reference
frame.

Elemental Impedance: By definition

from the elemental equation.
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(2) The Torsional Spring:

Let 6, and 6, be the angular displacements of the two ends from their rest positions.
Hooke’s law for a torsional spring is

T=K(0,—06).
where K is defined to be the torsional stiffness. Differentiation gives
dT d(0, — 6p)
g Ne 7
dt dt

dT
— = KQ
dt

where ) = (Qa — Qb) is the angular velocity drop across the spring.

Torsional stiffness may result from the material properties of a “long” shaft

Jq Jo

" F 5 = o

shaft can twist with
different angular
velocities at the
two ends

or may be intentional, for example in a coil (“hair”) spring in a mechanical watch.
\T
Q

coil spring
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The energy stored in a torsional spring is

t
1
E= | TQdt = —T?
/ 2K

which is a function of the through variable, defining the spring as a T-type element.

Elemental Impedance: By definition

T Tx(s) K

from the elemental equation.

(3) The Rotational Damper: We look for an algebraic relationship between 7" and
Q of the form
T = BQ

viscous frictional T
contact

which is approximated as viscous rotational friction:

external viscous shaft
Nfrictional contact /%E
T, Q J%AY\/\ /\/’ 7

bearings
T (friction)

Qa

Notice that P = TQ = BO? > 0, which defines the damper as a D-type element.

Elemental Impedance: By definition

_QB(S)_ 1
P70 " B

from the elemental equation.

(d) Interconnection Laws: Consider an inertial element J subject to n external torques
11,15, ...,T,, for example
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s T, L
8h )
reference
Q direction
then 40
JE :T1 —T2+T3+T4

and in general
g dQ
Ty =J——
2 T=Tg
i=1
As in the translational case, we consider a “fictitious” d’Alembert torque 7); and write

iﬂ_szo
i=1

as the torque balance (continuity condition) at a node.

arrow on an
inertial branch
always points to
the reference node

Q, is always measured \
with repect to an inertial
reference frame

For an “inertia-less” node (J = 0),

which states that the external torques sum to zero, for example at node (a) below,
Tg — Tk =0.
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Continuity Condition: The sum of torques (including a d’Alembert torque
associated with an inertia a element) at any node on a system graph is zero.

Nodes represent points of distinct angular velocity in a rotational system, and by
analogy with translational systems, the compatibility condition is

Compatibility Condition: The sum of angular velocity drops around any
closed loop on a system graph is zero.

For example, on the graph:

two compatibility equations are:

Qr+Q;,—-Qy = 0 (Loop 1),
Qp —Qy (Loop 2).

I
o

2 Updated Tables of Generalized Elements to Include Rotational
Elements:

The tables presented in Lecture 13 are now updated to include rotational systems.

A-Type Elements:

Element Elemental equation | Energy
d 1
Generalized A-type f=c% £ =-CV*
dt 2
) dv 9
Translational mass F=m— E=—-—mv
dt 2
dS) 1
Rotational inertia T=J— E=-JO?
dt 2
d 1
Electrical capacitance 7= d_: &= §C’v2
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T-Type Elements :

Element Elemental equation Energy
1
Generalized T-type v = Ldf/dt = 5Lf2
1 dF 1
Translational spri = iy
ranslational spring V= & Ve
1.dT 1
Torsional spri = —— —
orsional spring a0 & Ve
oo di 1,
Electrical inductance v=L— E=-Li
dt 2

D-Type Elements:

Element Elemental equations Power dissipated
. 1 L, 2
Generalized D-type f= ﬁv v = Rf P = ﬁv = Rf
. 1 s 1 5
Translational damper | F' = Bv v = EF P = Bv* = EF
. 1 N
Rotational damper T = BQ) w = ET P =BQ* = ET
Electrical resist 2 R'P12R2
ectrical resistance |i= —v v=Ri =—v°=Ri
R R
Generalized Impedances:
A-Type | T-Type | D-Type
. 1
Generalized — sL R
Cs
1 1 1
Translational — — —
ranslationa o KS 5
1 1 1
tati 1 — — —
Rotationa oy KS 3
1
Electrical — L R
ectrica, O S
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