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Lecture 18!

Reading:

e Nise: Sec. 1.5

1 Common Inputs Used in Control System Design and Analysis

Two classes of inputs commonly used to characterize the performance of feedback control
systems are:

(a) The “Singularity” Functions: These functions have a discontinuity at time ¢ = 0:

(i) The Dirac Delta (Impulse) Function: The delta function is used to charac-
terize the response of a system to brief, intense inputs. In the figure below, (a)
shows some unit pulses (pulses with unit area so that if the duration of the pulse
is T, its amplitude is 1/T. The Dirac delta function 6(¢) is the limiting case of
such pulses as T'— 0. Notice that this implies that the amplitude 1/7 — oo.
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a) Unit pulses of different extents b) The impulse function

The strict definition of §(¢) is

o(t)=0, fort#0
0(t) is undefined at t =0 (Pn% i(t) = o0)
o+

/ ot =1

(ii) The Unit-Step Function u,(t): The unit-step (or Heaviside) function is used
to characterize a system’s transient response to a sudden change.
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The definition is

us(t) = 0 fort<0
= 1 fort>0

(iii) The Unit-Ramp Function r(¢): The unit-ramp function is used to charac-
terize a system’s ability to follow a time-varying input, and the transient behavior
around a discontinuity in the slope of an input function.

n(t)
1.0

0 1.0 time

The definition is

r(t) = 0 fort<0
=t fort>0

The singularity functions a related to each other by differentiation and integration, as
shown below:
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(b) Sinusoidal Inputs: The response of linear systems to sinusoidal inputs of the form

u(t) = Asin(wt + 0)
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Au(t) = A sin(ot)

NANA
RAYAY

is of fundamental importance to control engineering and system dynamics ant will be
studied extensively throughout the course.

B Example 1

In practice a machine, described a second-order transfer function G(s), will be
subjected to inputs that change suddenly. Use the unit-step response to deter-
mine how long it will take the machine’s response to settle to a new steady-state
value after a change.

The system’s block diagram is

u 1| Y
s2+ 55 +6

and the governing differential equation is

Py _dy
Z 2520 6y = u(t).
o+ By u(t)

The step response assumes that the system is “at rest” at time ¢ = 0, that is
y(0) = 0 and y(0) = 0, and that the input u(t) = u4(t).

The solution is
y(t) = yn(t) + yp(t)

where yj,(t) is the homogeneous solution, and y,(t) is the particular integral. The
characteristic equation is

MAB5A+6=A+3)(A+2)=0

and
yn(t) = Cre " + Che .

Assume y,(t) = K and substitute into the differential equation

0+0+6K =1

18-3



or y,(t) = 1/6. The complete solution is
y(t) = Cre " + Che ™ 4+ 1/6.
At time t =0

g(0) = —3C; —2C54+0=0

giving C; = 1/3 and Cy = —1/2, so that the system’s response to a unit-step
input is
_ 1 -3t 1 —2t 1 6
ystep<t> - 36 26 + / .
The response is shown below, and indicates that it takes this system 2.5-3 seconds
to respond to the step.
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B Example 2

Find the steady-state response of a first-order system to a sinusoidal input u(t) =
Asin(wt).

u(t) = A sin(wt) 1

7 s+ 1 — 0
The differential equation is
Yy =ult)
T—= =u
e Y
and assume the complete solution is y(t) = yn(t) + y,(t) as in the previous

example. The characteristic equation is

TA+1=0
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from which
yn(t) = Ce™'/7

and assume
Yp(t) = K cos(wt) + Ky sin(wt)

In steady-state we assume that y,(t) = C1e™*7 has decayed to zero, and
Yss(t) = yp(t) = K; cos(wt) + Ky sin(wt)
Substitution of y,(t) into the differential equation gives
Tw (— K sin(wt) + Ky cos(wt)) + (K5 cos(wt) + Ky sin(wt)) = Asin(wt)

or
(wr Ky + Kj) cos(wt) + (—wr K7 + Kb) sin(wt)
and comparing coefficients
LUTKQ + Kl =0
—WTKl + KQ = A,

o wTA A
METror T i
so that
Uss(t) = yp(t) = ﬁ (sin(wt) — wt cos(wt))
= A ( ! sin(wt) — S cos(wt))
V14 (wr)? \ /14 (w)? V14 (wr)?
A . :
= m (cos(¢) sin(wt) — sin(¢) cos(wte)) .

using the following triangle

. R
%& )= 7 oo?
A Wt 1

; cos(p) = PrpY =y

Then the system sinusoidal response is

sin(wt — @)

(t)—L
e

where ¢ = tan~!(w7). We note the following
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(a) The steady-state sinusoidal response is a sinusoid of the same frequency as
the input.

(b) There is a phase shift (lag) between the input and output ¢ = tan™!(wr).
(c) The amplitude of the output is a function of the input frequency w.
(d) e At low frequencies (w — 0), the response is ys(t) ~ Asin(wt) and the
amplitude approaches that of the input.
e At very high frequencies (w — 00), the response is yss(t) ~ (A/wT) sin(wt—
7/2) and the response amplitude becomes very small.
e When w = 1/7, y.(t) = (A/V/2) sin(wt — 7/4), that is the amplitude is
reduced by a factor of 0.707, and the phase shift is 45°.
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