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Lecture 201 

Reading: 

• Nise: Secs. 4.1 – 4.6 (pp. 153 - 177) 

1 Standard Forms for First- and Second-Order Systems 

These are (a) all pole system (with no zeros), and (b) have unity gain (limt→∞ ystep(t) = 1). 

1.1 First-Order System: 

We define the first-order standard form as 

1 
G(s) = ,

τs + 1

where the single parameter τ is the time constant. As a differential equation


dy
τ + y = u(t). 

dt 

and the system has a single real pole at s = −1/τ .


1copyright c D.Rowell 2008 
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The step response is 

ystep = L−1 

�
1 1/τ 

� 

= 1 − e−t/τ 

s s + 1/τ 

1.1.1 Common Step Response Descriptors: 

(a) Settling Time: The time taken for the response to reach 98% of its final value. Since 

ystep(t) = 1 − e−t/τ


and e−4 = 0.0183 ≈ 0.02, we take

Ts = 4τ 

as the definition of Ts. 

(b) Rise Time:	 Commonly taken as the time taken for the step response to rise from 
10% to 90% of the steady-state response to a step input. It is found from the step 
response as follows 

0.1 = 1 − e−t0.1/τ t0.1 = τ ln(0.9)⇒ 

0.9 = 1 − e−t0.9/τ t0.9 = τ ln(0.1)⇒ 

TR = t0.9 − t0.1 = (ln(0.1) − ln(0.9))τ = 2.2τ 

1.2 Second-Order Systems 

The standard unity gain second-order system has a transfer function 

ω2 

G(s) = n 

s2 + 2ζωns + ω2 
n 

with two parameters (1) ωn – the undamped natural frequency, and (ii) ζ – the damping 
ratio (ζ ≥ 0). The system poles are the roots of s2 + 2ζωns + ωn 

2 = 0, that is 

p1, p2 = −ζωn ± ωn

�
ζ2 − 1, 

leading to four cases 
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i) ζ > 1 – the poles are real and distinct 
p1, p2 = −ζωn ± ωn

�
ζ2 − 1, 

ii) ζ = 1 – the poles are real and coincident 
p1, p2 = −ζωn, 

iii) 0 < ζ < 1 – the poles are complex conjugates 
p1, p2 = −ζωn ± jωn

�
1 − ζ2, or 

(iv)	 ζ = 0 – the poles are purely imaginary 
p1, p2 = ±jωn. 

1.2.1 Pole Positions For an Underdamped Second-Order System 

p1, p2 = −ζωn ± jωn

�
1 − ζ2 

and when plotted on the s-plane 

we note that 
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(a) The poles lie at a distance ωn from the origin, and 

(b)	 The poles lie on radial lines at an angle 

θ = cos−1 (ζ) 

as shown above. 

The influence of ζ and ωn on the pole locations may therefore be summarized: 

1.2.2 Step Responses 

(a) The over damped case (ζ > 1) 

ystep(t) = 1 − C1e
−p1t − C2e

−p2t 

where the constants C1 and C2 are determined from p1 and p2. 

(b) The critically damped case (ζ = 1) With two coincident poles p1 = p2 = p, the 
step response takes a special form 

ystep(t) = 1 − C1e
pt − C2te

−pt 
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(c) The under damped case (0 < ζ < 1) With a pair of complex conjugate poles 

p1, p2 = −ζωn ± jωn

�
1 − ζ2 

the step response becomes oscillatory 

e−ζωnt 

ystep(t) = 1 − �
1 − ζ2 

�
cos 

�
ωn

�
1 − ζ2t − φ

�� 

where � 
ζ 

� 

φ = tan−1 �
1 − ζ2 

and if we define the damped natural frequency ωd as 

ωd = ωn

�
1 − ζ2 

we can write the step response as 

e−ζωnt 

ystep(t) = 1 − (cos (ωdt − φ))�
1 − ζ2 
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(d) The undamped case (ζ = 0) In this case 

ωn
G(s) = 

s2 + ω2 
n 

and the poles are p1, p2 = ±jωn. Then 

ystep(t) = 1 − cos (ωnt) 

Note: For any second-order system, the initial slope of the step response is zero, 
since by definition the system is at rest at time t = 0, that is ystep(0) = 0, and 
ẏstep(0) = 0. 

1.2.3 Step Response Based Second-Order System Specifications 

(a) Rise Time (TR): Applies to over- and under-damped systems. As in the case of 
first-order systems, the usual definition is the time taken for the step response to rise 
from 10% to 90% of the final value: 

For a second-order system there is no simple (general) expression for TR. The following 
figure - from Nise, Fig. 4.16, (p. 172) is derived empirically: 
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(b) Peak Time (Tp): Applies only to under-damped systems, and is defined as the time 
to reach the first peak of the oscillatory step response. 

Tp is found by differentiating the step response ystep(t), and equating to zero. (See Nise 
p. 170 for details.) 

π π 
Tp = = 

ωn

�
1 − ζ2 ωd 

** Transient response specifications continued in Lecture 21. **
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