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Lecture 20!

Reading:
e Nise: Secs. 4.1 — 4.6 (pp. 153 - 177)

1 Standard Forms for First- and Second-Order Systems

These are (a) all pole system (with no zeros), and (b) have unity gain (lim;_ o ystep(t) = 1).

1.1 First-Order System:

We define the first-order standard form as

1
s+ 1’

G(s) =

where the single parameter 7 is the time constant. As a differential equation

dy
— 4y = ult).
T +y = u(t)
and the system has a single real pole at s = —1/7.
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The step response is

ss+ 1/t
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1.1.1 Common Step Response Descriptors:

(a) Settling Time: The time taken for the response to reach 98% of its final value. Since

Ystep(t) =1 —e—t/T
and e~* = 0.0183 ~ 0.02, we take
T, =4r
as the definition of T.
(b) Rise Time: Commonly taken as the time taken for the step response to rise from

10% to 90% of the steady-state response to a step input. It is found from the step
response as follows

0.1=1—e"1/" = t3; =7In(0.9)
0.9=1—e9" = t39=7In(0.1)

TR = to.g - tO.l = (111(01) - 111(09))7' =227

1.2 Second-Order Systems

The standard unity gain second-order system has a transfer function

w?

G(s) = “

$2 4 2Cwy,s + w2

with two parameters (1) w, — the undamped natural frequency, and (ii) ¢ — the damping
ratio (¢ > 0). The system poles are the roots of s* + 2¢w,s + w? = 0, that is

P1, P2 = _Cwn :l:wn V CQ - 17

leading to four cases
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i) ¢ > 1 — the poles are real and distinct

D1, P2 = —Cwpn £ wyp/(? — 1,

ii) ¢ =1 — the poles are real and coincident
P1, P2 = — (W,

iii) 0 < ¢ < 1 — the poles are complex conjugates
p1,p2 = —Cwn £ jwny/1— (2, or

(iv) ¢ =0 — the poles are purely imaginary

P1,P2 = :I:jwn.
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1.2.1 Pole Positions For an Underdamped Second-Order System

P1,P2 = _Cwn :tjwn V 1— CQ

and when plotted on the s-plane
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we note that
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(a) The poles lie at a distance w,, from the origin, and
(b) The poles lie on radial lines at an angle
0 = cos™ (¢)
as shown above.
The influence of ¢ and w,, on the pole locations may therefore be summarized:
Ao jo
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1.2.2 Step Responses
(a) The over damped case (( > 1)

Ystep(t) =1 — Cre Pt — Che P2t

where the constants C; and C5 are determined from p; and ps.

no overshoot

6>1

b) The critically damped case (( =1 With two coincident poles p; = ps = p, the
Yy
step response takes a special form

Ystep(t) = 1 — CreP* — Cote™
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(c) The under damped case (0 < ¢ < 1)

}étep (t)

no overshoot

c=1

b1,p2 = _Cwn :t]wn V 1-— CZ

the step response becomes oscillatory

With a pair of complex conjugate poles

e—{wnt

i

Ystep(t) =1 — —— (cos (wn 1—C2%— ¢>>

where

1 ¢
= tan _—
’ (w —<2>

and if we define the damped natural frequency wy as

Wqg = wpV/ 1 — (2

we can write the step response as

e—Cwnt

ystep(t) =1- 1——C2 (COS (wdt - ¢))

ystep (t)
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(d) The undamped case (( =0) In this case

w
Qls) =
(5) s? + w?

and the poles are py,p; = £jw,. Then

Ystep(t) = 1 — cos (wyt)

}étep(t) pure oscillatory response
ol 5=0_

Note: For any second-order system, the initial slope of the step response is zero,

since by definition the system is at rest at time ¢t = 0, that is yq,(0) = 0, and
ystep(o) =0.

1.2.3 Step Response Based Second-Order System Specifications

(a) Rise Time (Tg):  Applies to over- and under-damped systems. As in the case of

first-order systems, the usual definition is the time taken for the step response to rise
from 10% to 90% of the final value:
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For a second-order system there is no simple (general) expression for Tg. The following
figure - from Nise, Fig. 4.16, (p. 172) is derived empirically:
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b) Peak Time (7,): Applies only to under-damped systems, and is defined as the time
p
to reach the first peak of the oscillatory step response.
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T, is found by differentiating the step response yq.,(t), and equating to zero. (See Nise
p. 170 for details.)

** Transient response specifications continued in Lecture 21. **
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