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Reading: 

• Nise: Secs. 4.6 – 4.8 (pp. 168 - 186) 

1 Second-Order System Response Characteristics (contd.) 

1.1 Percent Overshoot 

The height of the first peak of the response, expressed as a percentage of the steady-state

response. 

%OS = 
ypeak − yss × 100 

yss 

At the time of the peak y(Tp) 

ypeak = y(Tp) = 1 + e−(ζπ/
√

1−ζ2) 

and since yss = 1 

%OS = e−(ζπ/
√

1−ζ2) × 100. 

Note that the percent overshoot depends only on ζ.

Conversely we can find ζ to give a specific percent overshoot from the above:


− ln (%OS/100)
ζ = �

π2 + ln2 (%OS/100) 

1copyright c D.Rowell 2008 
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Example 1 

Find the damping ratio ζ that will generate a 5% overshoot in the step response 
of a second-order system. 

Using the above formula 

− ln (%OS/100) − ln(0.05)
ζ = = = 0.69�

π2 + ln2 (%OS/100) 
�

π2 + ln2(0.05) 

Example 2 

Find the location of the poles of a second-order system with a damping ratio 
ζ = 0.707, and find the corresponding overshoot. 

The complex conjugate poles line on a pair of radial lines at an angle 

θ = cos−1 0.707 = 45◦ 

from the negative real axis. The percentage overshoot is 

e−(ζπ/
√

1−ζ2)%OS = × 100 

e−(0.707π/
√

1−0.5)= × 100 

= 4.3% (≈ 5%) 

The value ζ = .707 = 
√

2/2 is a commonly used specification for system design 
and represents a compromise between overshoot and rise time. 

1.2 Settling Time 

The most common definition for the settling time Ts is the time for the step response ystep(t) 
to reach and stay within 2% of the steady-state value yss. A conservative estimate can be 
found from the decay envelope, that is by finding the time for the envelope to decay to less 
than 2% of its initial value, 

e−ζωnt 

�
1 − ζ2 

< 0.02 

giving 

ln(0.02
�

1 − ζ2)
Ts = − 

ζωn 

or

4 

Ts ≈ 
ζωn 

for ζ2 � 1. 
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Example 3 

Find (i) the pole locations for a system under feedback control that has a peak 
time Tp = 0.5 sec, and a 5% overshoot. Find the settling time Ts for this system. 

From Example 2 we take the desired damping ratio ζ = 0.707. Then 
π 

Tp = = 0.5 s 
ωn

�
1 − ζ2 

so that 
π π 

ωn = = = 8.88rad/s. 
Tp

�
1 − ζ2 0.5

√
1 − 0.5 

The pole locations are shown below: 

Then 

p1, p2 = −8.88 cos 
�π 

4 

� 
± j8.88 sin 

�π 
4 

� 

= −6.28 ± j6.28 

The indicated settling time Ts from the approximate formula is 

4 4 
Ts = = 0.64 s. ≈ 

ζωn 0.707 × 8.88 

Note that in this case ζ does not meet the criterion ζ2 � 1 and the full expression 

ln(.02
�

1 − ζ2) ln(.02
√

1 − 0.5)
Ts = − 

ζωn 
= − 

0.5 × 8.88 
= 0.68 s 

gives a slightly larger value. 
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2 Higher Order Systems 

For systems with three or more poles, the system be analyzed as a parallel combination of 
first- and second-order blocks, where complex conjugate poles are combined into a single 
second-order block with real coefficients, using partial fractions. The total system output is 
then the superposition of the individual blocks. 

Example 4 

Express the system 
5 

G(s) = 
(s + 1)(s2 + 2s + 5) 

as a parallel combination of first- and second-order blocks. 

5 A Bs + C 
G(s) = = + 

(s + 1)(s2 + 2s + 5) s + 1 s2 + 2s + 5 
5 1 5 s + 1 

= 
4 s + 1 

− 
4 s2 + 2s + 5 

using partial fractions. The system is described by the following block diagram 

and the response to an input u(t) may be found as the (signed) sum of the 
responses of the two blocks. 

3 Some Fundamental Properties of Linear Systems 

3.1 The Principle of Superposition 

For a linear system at rest at time t = 0, if the response to an input u(t) = f(t) is yf (t), and 
the response to a second input u(t) = g(t) is yg(t), then the response to an input that is a 
linear combination of f(t) and g(t), that is 

u(t) = af(t) + bg(t) 

where a and b are constants is 

y(t) = ayf (t) + byg(t). 
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3.2 The Derivative Property 

For a linear system at rest at time t = 0, if the response to an input u(t) = f(t) is yf (t), 
then the response to an input that is the derivative of f(t), that is 

df 
u(t) = 

dt 

is 
dyf 

y(t) = . 
dt 

3.3 The Integral Property 

For a linear system at rest at time t = 0, if the response to an input u(t) = f(t) is yf (t), 
then the response to an input that is the integral of f(t), that is 

t 

u(t) = f(t)dt 
0 

is 
t 

y(t) = yf (t)dt. 
0 

Example 5 

We can use the derivative and integral properties to find the impulse and ramp 
responses from the step response. We have seen 

therefore 

d 
yδ(t) = ystep(t)

dt
t 

yr(t) = ystep(t)dt 
0 
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For example, consider 
b 

G(s) = 
s + a 

with step response 
b �

1 − e−at
� 
.ystep = 

a 
The impulse response is 

d 
yδ(t) = ystep(t) = be−at ,

dt

and the ramp response is 

t� 
b 

� 
1 �

1 − e−at
�� 

yr(t) = ystep(t)dt = t + 
0 a a 

4 The Effect of Zeros on the System Response 

Consider a system with a transfer function: 

G(s) = K
N(s)

= K
sm + bm−1s

m−1 + · · · + b1s + b0 
. 

D(s) sn + an−1sn−1 + + a1s + a0· · · 
N(s), which defines the system zeros, is associated with the RHS of the differential equation, 
while D(s) is derived from the LHS of the differential equation. Therefore N(s) does not 
affect the homogeneous response of the system. 

We can draw G(s) as cascaded blocks in two forms: 

or 

In this case we consider the all-pole In this case we consider the all-pole sys­
system 1/D(s) to be excited by x(t), tem 1/D(s) to be excited by u(t) di­
which is a superposition of the deriva- rectly to generate x(t), and the out­
tives of u(t) put is formed as a superposition of the 

derivatives of v(t) 
m

x(t) = K 
� 

bk 
dku 

m

k=0 
dtk 

y(t) = K 
� 

bk 
dkv 
dtk 

k=0 
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Example 6 

Find the step response of 
s + 10 

G(s) = . 
s2 + 2s + 5 

Splitting up the transfer function 

1 
N(s) = s + 10, D(s) = 

s2 + 2s + 5 

and ωn = 
√

5, and ζ = 1/
√

5. 

Method 1: For the case, 

if u(t) = us(t), the unit-step function


du

x(t) = + 10u = δ(t) + 10us(t)

dt 

and for the all-pole system 1/D(s) 

1 
�

1 
� 

ystep(t) = 1 − e−t cos(2t) − e−t sin(2t)
5 2 
1 

yδ(t) = e−t sin(2t). 
2 

For the complete system


y(t) = yδ(t) + 10ystep(t)

1 

= 2 − 2e−t cos(2t) − e−t sin(2t)
2 

Method 2: For the case, 
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from above the step-response to the all-pole system 1/D(s) is


1 
�

1 
� 

v(t) = 1 − e−t cos(2t) − e−t sin(2t)
5 2 

and the system output is 

dv 
y(t) = + 10v 

dt 
1 10 

�
1 

� 

= e−t sin(2t) + 1 − e−t cos(2t) − sin(2t)
2 5 2 

1 
= 2 − 2e−t cos(2t) − e−t sin(2t)

2 

which is the same as found in Method 1. 
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