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Lecture 24!

Reading:

e Nise: Chapter 7

1 The Poles and Zeros of Closed-loop systems:

Consider the unity feedback system shown below with a controller G.(s) and plant G,(s):

controller plant

R(s) * C(s)
*>Q—> G(s) > G

Combine the two cascaded blocks to form a single forward transfer function G¢(s) = G.(s)G,(s)

controller & plant

R(s) *
%©—> 6,(5)G,(9) c(s)

and write

_ Ny(s)

Dj(s)
in terms of the numerator polynomial N¢(s) and denominator polynomial Dy(s). The closed-
loop transfer function is

Gy(s)

__Gils) o Ny(s)
Ga(s) = 1+ Gs(s)  Dys(s) + Ny(s)

from which we see that
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e The closed-loop poles are the roots of the characteristic equation N¢(s) 4+ Dy(s) = 0.

e The closed-loop zeros are the same as the zeros of the forward transfer function.

B Example 1

Find the closed-loop transfer function of the plant G,(s) = 3/(s + 3) under P-D
control where G, = 10 + 2s.

The forward transfer function is

The closed-loop transfer function is:

Ny(s) B 6(5+ s) _ 6(s+5) _ (§> s+5
s+33/7

GCZ(S) = Df(S) + Nf(s) (8 + 3) + 6(5 + S) (78 + 33)

7

so that the closed -loop pole is at s = —33/7 = —4.7143 and the closed-loop zero
is at s = —5 (the same as the open loop zero defined by the P-D controller).

Aside: The system can be analyzed using the following MATLAB commands:

forward_system = zpk(-5, -3, 6)

closed_loop =feedback(forward_system,1)

pole(closed_loop)  %Find the closed-loop system poles
zero(closed_loop)  ’%Find the closed-loop system system zeros
pzmap(closed_loop) %Make a pole-zero plot

step(closed_loop)  %Plot the closed-loop step response.
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The step response is shown below — note the initial transient caused by the direct
feed-through.

Now consider a closed-loop system with sensor dynamics H (s)

controller & plant

R(s) *
G,(s)G,(5) C(s)

H(s)

sensor

The closed-loop transfer function is
o) Gil)  Ny(s)Dals)
i 1+ Gy(s)H(s))  Dys(s)Du(s) + Ny(s)Nu(s)
where Ng(s) and Dg(s) are the numerator and denominator polynomials of the sensor
transfer function H(s). In this case:

e The closed-loop poles are the roots of the characteristic equation

e The closed-loop zeros are the zeros of the forward transfer function, and the poles of
the sensor transfer function.

B Example 2

Repeat the previous example with a sensor that has a transfer function H(s) =
10/(s + 10). The forward transfer function is
6(5+ s)

Gs(s) = Guls)Gy = =3

and
10

H —
)= 770

The closed-loop transfer function is:
N¢(s)Dg(s) B 6(5+ s)(s + 10) _ 6(s* 4 155+ 50)

" D(s)Du(s) + Ny(s)Nu(s)  (s+10)(s+3)+60(5+5)  (s2+ 73s + 330)
so that the closed-loop poles are at s = —4.84, —68.16 and the closed-loop zeros

are at s = —5, —10 (the same as the open loop zero defined by the P-D controller,
and the pole associated with the sensor).

Gcl(S)
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2 Steady-State Errors

In the lab we have considered steady-state errors for both velocity and position control of

the rotary inertia, and we have noted:

e There was a finite s.s. error with a constant input under velocity control.

e That the s.s. error was eliminated when we used PI (proportional + integral) control.

e There was no s.s. error with a constant input for positizon control.

We will look at the steady state error for two basic inputs

1. The step input. The step response measures the ability of a feedback control system
to regulate the output to a constant input.

0.8

0.6

Unit step response

0.4

0.2

The above figure shows the response to a unit step. One response exhibits ey, =
while the other shows a constant steady-state error.
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2. The ramp input. The steady-state ramp response error is a measure of a feedback

control system’s ability to follow a simple time-varying trajectory.
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The above figure shows three responses to a unit ramp input r(¢) = ¢. In one case there
is no steady-state error - as t becomes large, the response follows the input exactly.
In the second case there is a finite steady state error, the response has unit slope but
exhibits a constant offset from the input. The third case shows a response in which
the error is growing without bound, and the steady-state error is infinite.

We now look at the whole question of steady-state errors under closed-loop control, and
methods to eliminate them. Consider the unity feedback system:

controller & plant

R(s) * E(s)
—> G(s) > C(s)

The error signal E(s) is defined to be E(s) = R(s) —C(s), and the transfer function relating
the error to the input command is found from:

giving

E(s) 1 D(s)

R(s) 1+G(s) D(s)+ N(s)

where N(s) and D(s) are the numerator and denominator polynomials of G(s) respectively.
We recall the final value theorem:

lim f(t) = lim sF(s)

t—00 s—0
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so that

o = ) = (40 5 )
Now consider the two cases:

Step input: In this case, when r(t) = us(t), R(s) = 1/s so that

y 1 D(s) . D(s)

e =lm | $———""—— ) =lim | ——————
s—0 \ s D(s)+ N(s) s—0 \ D(s) + N(s)
The condition to ensure that e,, = 0 therefore must be that

lim D(s) = 0

s—0

! I (s — =)
O =R 5w

or D(s) = [[;=,(s — p;), to ensure that lims o D(s) = 0 we require that at least one

of the p; = 0 (one or more poles of the system be at the origin). This is equivalent to
saying that the forward transfer function must be of the form

_ H:’il(s — z;)
S e B
Ajo
X

For zero steady-state error for a
step input, there must be at

least one pole at the origin. \

X © > jw

Ramp input: In this case, when the input is a unit ramp r(t) = ¢, R(s) = 1/s?

y 1 D(s) i (L D(s)

s =lim | s———-"—— | =lim| ~——-"—"—
s—0 \ s2 D(s)+ N(s) s—0 \ s D(s) + N(s)
The condition to ensure that eg, = 0 therefore must be that

lim is)

s—0 S

=0
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If as before m
G(S) _ KH:'L:l(S — Z’L)
[Ti=i(s — pi)
or D(s) =[]i_,(s — pi), to ensure that lims o D(s)/s = 0 we require that at least two

of the p; = 0 (one or more poles of the system be at the origin). This is equivalent to
saying that the forward transfer function must be of the form

m
(s — 2
G(s) =K kH;—l( J k> 2.
s Hi:k+1<8 —pi)
A Jo
X
For zero steady-state error for a
ramp input, there must be at
least two poles at the origin.
X 0 X > jw
X

The above argument can be extended as follows:

For zero steady-state error to a waveform with a Laplace transform 1/s*,
the forward transfer function must have at least k£ poles at the origin.

2.1 System Type

Poles at the origin s = 0 are known as free integrators. The System Type is defined as the
number of free integrators in the system.

. o) — (5—21)...(8—2m)
Type 0: G(s) K( —p1)...(5—py)

. o) — (3—21)..‘(3—2m)
Type 1: G(s) Ks(s—pz)--~(3_pn)
Type 2: - G(s) =K =) (8= on)

s2(s—p1)...(s—pn)
and we can say

e For a system under proportional control, to ensure e,; = 0 for a step input, the system
must be at least Type 1.
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e For a system under proportional control, to ensure e, = 0 for a ramp input, the system
must be at least Type 2.

and we can make the following table showing the steady-state error conditions:

Type 0 Type 1 Type 2 Type 3
step ess = constant ess =0 Css = Css =
ramp €ss = OO €ss = constant Css = Css =
parabola Ces = OO €gg = OO ess = constant | egs = 0

B Example 3

In the lab you (should have) observed that with proportional control (1) that the
velocity control gave a finite steady state error for a constant input, whereas (2)
the position control had zero steady-state error.

For velocity control:

Q(s) K
G pumy pu— p
&=, ~T5+B
which is a Type 0 system, which will have a finite steady-state error. For position
control: 4 %
G(S) (S) _ p

- 04(s)  s(Js+ B)

which is a Type 1 system, and from the above argument will have a zero steady-
state error.

B Example 4

Show why PI control reduces the steady-state error to zero for a step input with
a Type 0 system.

PI1 controller plant

R(s) * ; C(s)
2 ) KBRS 6 >
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For a PI controller, the transfer function is
KpS + Kz
5

1
GC<S) = Kp + KZ; =

so that the controller introduces (1) a pole at the origin, and(2) a zero at s =
—K;/ K, so that the forward transfer function is
(s + K/ )
Gy(s) = Ge(s)Gp(s) = KP%GP(S)
which is Type 1, and will have zero steady-state error for a constant input.

2.2 Static Error Constants

Recall that the transfer function relating the error to the input is
1

E(s)———.

S e

For a step input

L 1 I 1
Cs = 0°\5 ) 11 Gls) 1+ 1imy_0G(s)

If we define a static position constant K, (not to be confused with a controller gain) as

K, = il_r)% G(s) then ez = T K,

Similarly, for a ramp input (constant velocity)

. 1 1 1
€es = liM 8

5—0 (?) 1+ G(s) ~ lim, o sG(s)

and, if we define a static velocity constant K, as

. 1
K, = ?i% sG(s) then ez = X

We can also define an acceleration constant K, for parabolic inputs, since

i 1 1 1
ess = lims | — = —
s—0 \ s ) 1+ G(s) limg_gs2G(s)

so that if
1
_ N 2 _
K, = 15%3 G(s) then eg = T
Input Error Type 0 Type 1 Type 2
step 1/(14+K)) |ess =1/(1+K,) | K, =00,€5s=0 | K, =00, €55 =0
ramp 1/K, K,=0, e, =00 ess = 1/ K, K, =00, e =0
parabola 1/K, K,=0,e,=00| K, =0, ey = 0 1/K,
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