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Reading: 

• Nise: Chapter 7 

1 The Poles and Zeros of Closed-loop systems: 

Consider the unity feedback system shown below with a controller Gc(s) and plant Gp(s): 

Combine the two cascaded blocks to form a single forward transfer function Gf (s) = Gc(s)Gp(s) 

and write 
Nf (s)

Gf (s) = 
Df (s) 

in terms of the numerator polynomial Nf (s) and denominator polynomial Df (s). The closed-
loop transfer function is 

Gf (s) Nf (s)
Gcl(s) = = 

1 + Gf (s) Df (s) + Nf (s) 

from which we see that 
1copyright c D.Rowell 2008 
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• The closed-loop poles are the roots of the characteristic equation Nf (s) + Df (s) = 0. 

• The closed-loop zeros are the same as the zeros of the forward transfer function. 

Example 1 

Find the closed-loop transfer function of the plant Gp(s) = 3/(s + 3) under P-D 
control where Gc = 10 + 2s. 

The forward transfer function is 

6(5 + s)
Gf (s) = Gc(s)Gp = 

s + 3 

The closed-loop transfer function is: 

Nf (s) 6(5 + s) 6(s + 5) 
�

6
� 

s + 5 
Gcl(s) = = = = 

Df (s) + Nf (s) (s + 3) + 6(5 + s) (7s + 33) 7 s + 33/7 

so that the closed -loop pole is at s = −33/7 = −4.7143 and the closed-loop zero 
is at s = −5 (the same as the open loop zero defined by the P-D controller). 

Aside: The system can be analyzed using the following MATLAB commands: 

forward_system = zpk(-5, -3, 6)

closed_loop =feedback(forward_system,1)

pole(closed_loop) %Find the closed-loop system poles

zero(closed_loop) %Find the closed-loop system system zeros

pzmap(closed_loop) %Make a pole-zero plot

step(closed_loop) %Plot the closed-loop step response.
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The step response is shown below – note the initial transient caused by the direct 
feed-through. 

Now consider a closed-loop system with sensor dynamics H(s) 
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The closed-loop transfer function is 

Gf (s) Nf (s)DH (s)
Ccl(s) =	 = 

1 + Gf (s)H(s)) Df (s)DH (s) + Nf (s)NH (s) 

where NH (s) and DH (s) are the numerator and denominator polynomials of the sensor 
transfer function H(s). In this case: 

•	 The closed-loop poles are the roots of the characteristic equation

Df (s)DH (s) + Nf (s)NH (s) = 0.


•	 The closed-loop zeros are the zeros of the forward transfer function, and the poles of 
the sensor transfer function. 

Example 2 

Repeat the previous example with a sensor that has a transfer function H(s) = 
10/(s + 10). The forward transfer function is 

6(5 + s)
Gf (s) = Gc(s)Gp = 

s + 3 
and 

10 
H(s) = 

s + 10 
The closed-loop transfer function is: 

Nf (s)DH (s) 6(5 + s)(s + 10) 6(s2 + 15s + 50) 
Gcl(s) =	 = = 

Df (s)DH (s) + Nf (s)NH (s) (s + 10)(s + 3) + 60(5 + s) (s2 + 73s + 330) 

so that the closed-loop poles are at s = −4.84, −68.16 and the closed-loop zeros 
are at s = −5, −10 (the same as the open loop zero defined by the P-D controller, 
and the pole associated with the sensor). 

24–3




0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Step Response

Time (sec)

U
ni

t s
te

p 
re

sp
on

se

desired y   = 1

ss

e    = 0

e    = 0.25

ss

ss

2 Steady-State Errors 

In the lab we have considered steady-state errors for both velocity and position control of 
the rotary inertia, and we have noted: 

•	 There was a finite s.s. error with a constant input under velocity control. 

•	 That the s.s. error was eliminated when we used PI (proportional + integral) control. 

• There was no s.s. error with a constant input for position control. 

We will look at the steady state error for two basic inputs 

1. The step input. The step response measures the ability of a feedback control system 
to regulate the output to a constant input. 

The above figure shows the response to a unit step. One response exhibits ess = 0, 
while the other shows a constant steady-state error. 

2. The ramp input.	 The steady-state ramp response error is a measure of a feedback 
control system’s ability to follow a simple time-varying trajectory. 

24–4




+

-

R ( s )
C ( s )G ( s )

c o n t r o l l e r  &  p l a n t
E ( s )

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Time (sec)

U
ni

t r
am

p 
re

sp
on

se

infinite e

zero e

finite e

ss

ss

ss

The above figure shows three responses to a unit ramp input r(t) = t. In one case there 
is no steady-state error - as t becomes large, the response follows the input exactly. 
In the second case there is a finite steady state error, the response has unit slope but 
exhibits a constant offset from the input. The third case shows a response in which 
the error is growing without bound, and the steady-state error is infinite. 

We now look at the whole question of steady-state errors under closed-loop control, and 
methods to eliminate them. Consider the unity feedback system: 

The error signal E(s) is defined to be E(s) = R(s) − C(s), and the transfer function relating 
the error to the input command is found from: 

C(s) = G)s)E(s) 

E(s) = R(s) − C(s) 

giving 
E(s) 1 D(s) 

= = 
R(s) 1 + G(s) D(s) + N(s) 

where N(s) and D(s) are the numerator and denominator polynomials of G(s) respectively. 
We recall the final value theorem: 

lim f(t) = lim sF (s) 
t→∞ s→0 
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so that �
D(s) 

� 

ess = lim e(t) = lim sR(s) 
t→∞ s→0 D(s) + N(s) 

Now consider the two cases: 

Step input: In this case, when r(t) = us(t), R(s) = 1/s so that 
� 

1 D(s) 
� � 

D(s) 
� 

ess = lim s = lim 
s 0 s D(s) + N(s) s 0 D(s) + N(s)→ →

The condition to ensure that ess = 0 therefore must be that


lim D(s) = 0

s 0→

If �m
i=1(s − zi)

G(s) = K �n 
i=1(s − pi) 

or D(s) = 
�n (s − pi), to ensure that lims 0 D(s) = 0 we require that at least one i=1 →

of the pi = 0 (one or more poles of the system be at the origin). This is equivalent to 
saying that the forward transfer function must be of the form 

�m
i=1(s − zi)

G(s) = K 
k 
�n k ≥ 1 

s i=k+1(s − pi) 

Ramp input: In this case, when the input is a unit ramp r(t) = t, R(s) = 1/s2 

� 
1 D(s) 

� �
1 D(s) 

� 

ess = lim s 
2 

= lim 
s 0 s D(s) + N(s) s 0 s D(s) + N(s)→ →

The condition to ensure that ess = 0 therefore must be that


D(s)

lim = 0 
s 0 s→
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If as before �m
i=1(s − zi)

G(s) = K �n
i=1(s − pi) 

or D(s) = 
�n (s − pi), to ensure that lims 0 D(s)/s = 0 we require that at least two i=1 →

of the pi = 0 (one or more poles of the system be at the origin). This is equivalent to 
saying that the forward transfer function must be of the form 

�m
i=1(s − zi)

G(s) = K
sk 

�
i
n 
=k+1(s − pi) 

k ≥ 2. 

The above argument can be extended as follows:


For zero steady-state error to a waveform with a Laplace transform 1/sk , 
the forward transfer function must have at least k poles at the origin. 

2.1 System Type 

Poles at the origin s = 0 are known as free integrators. The System Type is defined as the 
number of free integrators in the system. 

(s − z1) . . . (s − zm)
Type 0: - G(s) = K 

(s − p1) . . . (s − pn) 
(s − z1) . . . (s − zm)

Type 1: - G(s) = K 
s(s − p2) . . . (s − pn) 
(s − z1) . . . (s − zm)

Type 2: - G(s) = K 
s2(s − p1) . . . (s − pn) 

and we can say 

•	 For a system under proportional control, to ensure ess = 0 for a step input, the system 
must be at least Type 1. 
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•	 For a system under proportional control, to ensure ess = 0 for a ramp input, the system 
must be at least Type 2. 

and we can make the following table showing the steady-state error conditions: 

Type 0 Type 1 Type 2 Type 3 
step 
ramp 
parabola 

ess = constant 
ess = ∞
ess 

ess = 0 
ess = constant 

ess 

ess = 0 
ess = 0 

ess = constant 

ess = 0 
ess = 0 
ess = 0= ∞ = ∞ 

Example 3 

In the lab you (should have) observed that with proportional control (1) that the 
velocity control gave a finite steady state error for a constant input, whereas (2) 
the position control had zero steady-state error. 

For velocity control: 
Ω(s) Kp

G(s) = = 
Ωd Js + B 

which is a Type 0 system, which will have a finite steady-state error. For position 
control: 

θ(s) Kp
G(s) = = 

θd(s) s(Js + B) 

which is a Type 1 system, and from the above argument will have a zero steady-
state error. 

Example 4 

Show why PI control reduces the steady-state error to zero for a step input with 
a Type 0 system. 
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For a PI controller, the transfer function is 

1 Kps + Ki
Gc(s) = Kp + Ki = 

s s 

so that the controller introduces (1) a pole at the origin, and(2) a zero at s = 
−Ki/Kp so that the forward transfer function is 

(s + Ki/Kp)
Gf (s) = Gc(s)Gp(s) = Kp Gp(s) 

s 
which is Type 1, and will have zero steady-state error for a constant input. 

2.2 Static Error Constants 

Recall that the transfer function relating the error to the input is 

1 
E(s) . 

1 + G(s) 

For a step input �
1
� 

1 1 
ess = lim s = 

s→0 s 1 + G(s) 1 + lims→0 G(s) 

If we define a static position constant Kp (not to be confused with a controller gain) as 

1 
Kp = lim G(s) then ess = 

s→0 1 + Kp 

Similarly, for a ramp input (constant velocity) 
� 

1 
� 

1 1 
ess = lim s = 

s→0 s2 1 + G(s) lims→0 sG(s) 

and, if we define a static velocity constant Kv as 

1 
Kv = lim sG(s) then ess = . 

s 0 Kv→

We can also define an acceleration constant Ka for parabolic inputs, since 
� 

1 
� 

1 1 
ess = lim s = 

s→0 s3 1 + G(s) lims→0 s2G(s) 

so that if 

Input Error Type 0 Type 1 Type 2 
step 
ramp 
parabola 

1/(1 + Kp) 
1/Kv 

1/Ka 

ess = 1/(1 + Kp) 
Kv = 0, ess = ∞
Kv = 0, ess 

Kp = ∞, ess = 0 
ess = 1/Kv 

Kv = 0, ess 

Kp = ∞, ess = 0 
Kv = ∞, ess = 0 

1/Ka 

1 
Ka = lim s 2G(s) then ess = . 

s 0 Ka→

= ∞= ∞
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