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Lecture 281 

Reading: 

• Nise: Chapter 8 

1 Root Locus Development (contd. from Lecture 27) 

1.1 Behavior of the Root Locus as the Gain K Becomes Large (contd.) 

For a closed-loop system 

with open-loop transfer function G(s) = KGc(s)Gp(s)H(s), we saw in Lecture 27 that the 
asymptotic angles are summarized in the following table: 

n − m 
1 
2 
3 
4 

Asymptote Angles 
180◦ 

90◦, 270◦ 

60◦, 180◦, 300◦ 

45◦, 135◦, 225◦, 315◦ 
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n - m  =  1

1 8 0 o

n - m  =  2

2 7 0 o

9 0 o

1 8 0 o

3 0 0 o

6 0 o

n - m  =  3 n - m  =  4

4 5 o1 3 5 o

2 2 5 o

3 1 5 o

We now refine this property a little further. Let


sm + bm−1s
m−1 + bm−1s

m−2 + . . . + b0 (s − z1)(s − z2) . . . (s − zm)
G(s) = K = K . 

sn + an−1sn−1 + an−1sn−2 + . . . + a0 (s − p1)(s − p2) . . . (s − pn) 

For any polynomial of degree k, the coefficient of the term in sk−1 is the sum of the roots of 
the polynomial, so that 

bm−1 = −(z1 + z2 + . . . + zm) 

an−1 = −(p1 + p2 + . . . + pn). 

Further for large s, assume that we can ignore all but the first two terms in each polynomial, 
and write: 

sm + bm−1s
m−1 sm − (z1 + z2 + . . . + zm)sm−1 

G(s) ≈ K
sn + an−1sn−1 

= K
sn − (p1 + p2 + . . . + pn)sn−1 

. 

For large K, m closed-loop poles approach m of the open-loop zeros (which are also closed-
loop zeros). and if we assume pole/zero cancellation we can do polynomial division and 
write 

1 
G(s) ≈ K

sn−m + (an−1 − bm−1)sn−m−1 

We can then use the relationship that for large x 

x k + cx k−1 ≈ (x + c/k)k 

to write 
1 

G(s) ≈ K 
(s − σa)n−m 

where 

σa = − 
an−1 − bm−1 

n − m 
= 

(p1 + p2 + . . . + pn) − (z1 + z2 + . . . + zm) 
n − m 
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The closed-loop characteristic equation for large s and large K may be approximated


K 
1 + KG(s) ≈ 1 + 

(s − σa)n−m 
= 0 

and the asymptotes are given by 

(s − σa) = K1/(n−m)(−1)1/(n−m) 

which is similar to the result obtained in Lecture 27, namely that the roots lie on a circle of 
radius K1/n−m, but this time with the difference that the asymptotes radiate from the point 
s = σa. The point s = σa is defined as the centroid of the asymptotes and 

� 
poles − 

� 
zeros 

σa = , 
n − m 

and σa is always real because poles and zeros are either real of complex conjugates. The 
following figure shows the displacement of the origin of the asymptotes: 

The root locus sketching rule, for constructing the locus of a system with m open-loop zeros, 
and n open-loop poles, for large values of gain K is therefore: 

•	 As the value of K → ∞, m of the closed-loop poles approach the 
m open loop zeros. 

•	 As the gain K becomes large, n − m branches of the root locus 
diverge away from a point s = σa on the real axis and approach 
n − m radial asymptotes, at angles θk = (2k + 1)π/(n − m), for k = 
0 . . . (n − m − 1). 

Example 1 

Sketch the root locus plot for the open-loop system 

1 
G(s) = K 

(s + 1)(s + 2)(s + 4) 

and find the gain K at which it becomes unstable. We proceed as follows: 
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1. Determine and plot the open-loop poles and zeros. 

2. Determine and plot the regions of the real axis that lie on the root locus. 

3. Determine the number of asymptotes.	 There are no finite zeros, therefore 
n − m = 3. 

4. Determine the asymptote angles and centroid, then sketch the asymptotes. 
For three asymptotes the angles are (see the above table) 60◦, 180◦, 300◦. 
The centroid is 

σa =	 ((sum of the poles) − (sum of the zeros))/(n − m) 
1 7 

= ((−1 − 2 − 4) − (0)) = −
3	 3 

These steps were used to produce the following sketch: 

The closed-loop characteristic equation is: 

(s + 1)(s + 2)(s + 4) + K = s 3 + 7s 2 + 14s + 8 + K = 0 

and at the point of marginal stability (when s = jω) 

−jω3 − 7ω2 + j14ω + 8 + K = 0 + j0 

Equating the real and imaginary parts 

−7ω2 + 8 + K = 0 

−ω3 + 14ω = 0 
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giving 

ω = 0, 
√

14 

K = −8, 90 

Since the roor locus is defined only for K > 0 we conclude that the system will 
become unstable for K > 90, and the locus will cross the imaginary axis at 
s = ±j

�
(14) rad/s. 

Example 2 

Show the effect of PD control on the root-locus of the previous example. 

Let 
Gc(s) = Kp + Kds = K(s + b), 

where b = Kp/Kd and K = Kd. The PD controller has added a zero at s = −b 
to the system. The open-loop transfer function is now 

s + b 
G(s) = K 

(s + 1)(s + 2)(s + 4) 

and we have n − m = 2. 

Assume for now that b = 3. There will be n − m = 2 asymptotes, at angles 90◦ 

and 270◦. The centroid will be 

1 
σa ((−1 − 2 − 4) − (−3)) = −2 

2

Now assume b = 6. The centroid will be 

1 
σa ((−1 − 2 − 4) − (−6)) = −0.5 

2

These two cases are sketched below: 
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Notice that as the PD zero moves deeper into the l.h. plane, it moves the asymp­
tote toward the imaginary axis, meaning that the dominant closed-loop poles 
become lightly damped. You can show for yourself that if b > 7, the asymptote 
origin σa > 0 and this system will become unstable as K is increased. 

Example 3 

Show some typical effects of PID control on the root-locus of the previous exam­
ple. 

With PID control 

Ki
Gc(s) = Kp + + Kds 

s 
s2 + (Kp/Kd)s + Ki/Kd 

= Kd 
s 

(s − z1)(s − z2) 
= K 

s 

The PID controller has added a pole at the origin, and two zeros, which we as 
designers can place in order to shape the root locus to meet a set of specifications 
on the dynamic response. The open-loop transfer function is now 

G(s) = K 
(s − z1)(s − z2) 

s(s + 1)(s + 2)(s + 4) 
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and we have n − m = 2. There will be n − m = 2 asymptotes, at angles 90◦ and 
270◦. The two root loci below show cases for 

(a) two real zeros (z1,2 = −4.5, −5), and 

(b) two complex conjugate zeros (z1,2 = −2 ± j2). 

In the first case the centroid will be 

1 
σa = ((0 − 1 − 2 − 4) − (−4.5 − 5)) = 1.25,

2

while in the second case the centroid will be 

1 
σa = ((0 − 1 − 2 − 4) − (−2 + j2 − 2 − j2)) = −0.5 

2

These two cases are sketched below: 
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