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Lecture 291 

Reading: 

• Nise: Chapter 8 

1 Root Locus Refinement 

The complete set of sketching rules contains additional methods to make a sketched plot 
more accurate. While these were useful in the days before ubiquitous computation, today 
with the existence of tools such as MATLAB makes these graphical refinements somewhat 
unnecessary. We therefore just mention them here and refer you to Nise, Section 8.5, for 
more detail. 

1.1 Real-Axis Breakaway and Break-In Points 

A breakaway point is the point on a real axis segment of the root locus between two real 
poles where the two real closed-loop poles meet and diverge to become complex conjugates. 
Similarly, a break-in point is the point on a real axis segment of the root locus between two 
real zeros where two real closed-loop complex conjugate zeros meet and diverge to become 
real. 

Because the closed-loop poles originate from open-loop poles (when K = 0), a breakaway 
point will correspond to the point of maximum K along the real-axis segment. Similarly, a 
break-in point will correspond to the point of minimum K on the real axis segment between 
the two zeros. 

The closed-loop characteristic equations is 1 + KG(s) = 0, so that along the root locus 
segments on the real axis (s = σ) 

1 D(σ)
K = −

G(σ)
= −

N(σ) 

1copyright c D.Rowell 2008 
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The breakaway/break-in points (maximum/minimum points) will therefore occur where 

dK d 
� 

D(σ) 
� 

dσ 
= −

dK N(σ) 
= 0 

or when 
N(σ)D�(σ) − N �(σ)D(σ) = 0. 

Example 1 

Find the real axis breakaway/break-in points for the closed-loop system with 

s2 + 10s + 24 (s + 6)(s + 4) 
G(s) = = . 

s2 + 3s + 2 (s + 1)(s + 2) 

The root locus has two real-axis segments, between the pole pair and between 
the zero pair. There will therefore be a breakaway point and a break-in point. 

The breakaway/break-n points will be contained in the roots of 

N(σ)D�(σ) − N �(σ)D(σ) = 0. 

or 

(σ2 + 10σ + 24)(2σ + 3) − (σ2 + 3σ + 2)(2σ + 10) = 7σ2 + 44σ + 52 = 0 

giving σ1,2 = −4.708, −1.578, as shown below: 
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1.2 Angle of Arrival and Departure from Zeros and Poles 

Further refinement of the Root Locus may be made by computing the angle at which the 
branches of the locus depart from the open-loop poles, and arrive at the open-loop zeros. 

Consider a point a small distance � from a pole: 

The angle condition at the point requires 
� 

angles from the zeros − 
� 

angles from the poles = (2k + 1)π 

or 
φ1 + φ2 − θ1 − θd = (2k + 1)π 

29–3 



s

j w

X

o

X

q

f

d j 2

a n g l e  o f  d e p a r t u r e

- j 2

- 1- 4

q

- 1 0 - 8 - 6 - 4 - 2 0

- 4

- 2

2

4
1 2 3 . 7 o

s

j w

- 7 . 6 1

Let k = 0 and let � 0, then → 
θd = φ1 + φ2 − θ1 − π 

where the angles are measured to the pole itself. 
A similar argument defines the angle of arrival at a complex zero. 

Example 2 

Find the angle of departure at the pole p = −1 + j2 for the closed-loop system 
where 

s + 4 
G(s) = . 

s2 + 2s + 5 

In the above figure θ = 90◦, φ = arctan(2/3) = 33.7◦. The angle of departure 
is therefore 

θd = φ − θ − π 

= 33.7◦ − 90◦ − 180◦ 

= −236.31◦ = 123.69◦ 
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1.3 Summary of Root Locus Sketching Rules


Definitions • The open-loop transfer function is KGc(s)GpH(s) which can 
be rewritten as KN(s)/D(s). 
• N(s), the numerator, is an mth order polynomial; D(s) is nth 
order. 
• G(s) has zeros at zi, (i = 1 . . . m); and poles at pi (i = 1 . . . n). 

Symmetry The locus is symmetric about real axis (i.e., complex poles ap­
pear as conjugate pairs). 

Number of branches There are n branches of the locus, one for each pole of the closed-
loop transfer function. 

Start and end points The locus starts (when K = 0) at poles of the open-loop transfer 
function, and ends (when K = ∞) at the zeros. Note: there are 
n − m zeros of the open-loop transfer function as |s| → ∞. 

Locus on real axis The locus exists on the real axis to the left of an odd number of 
poles and zeros. 

Asymptotes as |s| → ∞ If n > m there are n − m asymptotes of the root locus that 
intersect the real axis at σa = (

� 
pi −

� 
zi)/(n−m), and radiate 

out with angles θk = (2k +1)π/(n−m), for k = 0 . . . (n−m−1). 

Refinement of the Root Locus: 

Breakaway and break-in 
points on the real axis 

There are breakaway or in points of the locus on the real axis 
wherever N(s)D�(s) − N �(s)D(s) = 0. 

Angle of departure from 
a complex pole 

The angle of departure from pole pj is 

θd,pj = ±180◦ + 
m� 

i=1 

� (pj − zi) − 
n� 

i=1,i�=j 

� (pj − pi) 

Angle of arrival at com­
plex zero 

The angle of arrival at zero zj is 

φa,zj = ±180◦ + 
m� 

i=1,i�=j 

� (zj − zi) − 
n� 

i=1 

� (zj − pi) 

Imaginary axis crossings 
(stability limits) 

Use Routh-Hurwitz to determine where the locus crosses the 
imaginary axis, or assume a form for the closed-loop char. eqn. 
and solve for the coefficients 

Determine the poles for 
a given gain K 

Substitute the value of K into D(s) + KN(s) = 0 and find roots 
of characteristic equation. (This may require a computer) 

Determine K for a given 
pole location 

Use the magnitude condition with s = σ + jω, ie K = 
−D(s)/N(s). (If s is not exactly on the locus, K may be com­
plex, but the imaginary part should be small. Take the real part 
of K for your answer.) 
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2.1 

rlocus() 
For example 
sys =

rlocus(sys)


produces the plot 

MATLAB Root Locus Functions 

MATLAB Language Functions 

The function rlocus(sys) produces a root locus plot for the system object sys. 

zpk([ -1.5 -4.5],[0 -1 -4],1) 

−12 −10 −8 −6 −4 −2 0 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Root Locus

Real Axis

Im
ag

in
ar

y 
A

xi
s

sgrid() The function sgrid without any arguments generates a grid over an existing con­
tinuous s-plane root locus or pole-zero plot. Lines of constant damping ratio (ζ) and 
undamped natural frequency (ωn) are drawn. 
If invoked with a pair of arguments, sgrid(zeta, wn), lines of constant damping ratio 
for the values given in the vectors zeta and wn will be plotted. For example 
sgrid([0.92 0.95 0.98], [3 4 5 6 7]) superimposed on the above example pro­
duces the plot 
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Example 3 

Use MATLAB to find the gain K to achieve a closed-loop damping ratio 0f 
ζ = 0.707 for the open-loop system 

(s + 1)2 

G(s) 
s(s2 + 1) 

The commands sys = tf([1 2 1],[1 0 1 0]) 
sgrid(0.707, 0) 
produce the plot 

With the cursor, the gain is found to be K = 4.52. The step response of the 
closed-loop system is found with the following commands: 
closed loop = feedback (4.52*sys, 1) 
step(closed loop) 
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We note that the overshoot is greater than the 5% predicted by the poles with 
a damping ratio of ζ = 0.707. This is because the closed-loop system retains the 
open-loop zeros, and these zeros accentuate the overshoot. 

Example 4 

Plot the root locus for 
(s + 1.5)(s + 5.5)

G(s) . 
s(s + 1)(s + 5) 

sys = zpk([-1.5 -5.5],[0 -1 -5],1) 
rlocus(sys) 
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2.2 RLTOOL, an Interactive Root Locus Design Tool 

RLTOOL is a variant of SISOTOOL, which is an interactive GUI based control system design 
tool in MATLAB. It will be introduced through a classroom demo. 

•	 The plant Gp(s) may be imported as a system object from the MATLAB workspace. 

•	 The compensator/controller may be defined interactively by placing poles and zeros 
directly on the root locus plot. 

•	 These poles may be moved around by dragging on the plot. 

•	 Response curves (step, impulse, etc) may be displayed as the gain is changed. 
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