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Reading: 

Nise: 10.1 • 

1 Sinusoidal Frequency Response 

1.1 Definitions 

Consider a sinusoidal waveform 

f(t) = A sin (ωt + φ) 

where


A is the amplitude (in appropriate units)


ω is the angular frequency (rad/s)


φ is the phase (rad)


In addition we can define


T the period T = 2π/ω (s)


f the frequency, (f = 1/T = ω/2π) (Hz)


1copyright c D.Rowell 2008 
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The Euler Formulas: We will frequently need the Euler formulas 

ejωt = cos (ωt) + j sin (ωt) 

e−jωt = cos (ωt) − j sin (ωt) 

or conversely 

cos (ωt) =
1 �

ejωt + e−jωt
� 

2 

sin (ωt) = 
1 �

ejωt − e−jωt
� 

2j 

1.2 The Steady-State Sinusoidal Response 

Assume a system, such as shown above, is excited by a sinusoidal input. The total response 
will have two components a) a transient component, and a steady-state component 

y(t) = yh(t) + yp(t). 

We define the steady-state component as the particular solution yp(t). Let the system dif­
ferential equation be 

dny dn−1y dy dmu dm−1u du 
an 

dtn 
+ an−1 

dtn−1 
+ . . . + a1 

dt 
+ a0y = bm 

dtm 
+ bm−1 

dtm−1 
+ . . . + b1 

dt 
+ b0u 

with a complex exponential input 
u(t) = ejωt. 

Assume a particular solution yp(t) to be of the same form as the input, that is 

yp(t) = Aejωt 

and since 
dkyp 

= A(jω)k ejωt 

dtk 

substitution into the differential equation gives: 

�
an(jω)n + an−1(jω)n−1 + . . . + a1(jω) + a0

� 
Aejωt 

= 
�
bm(jω)m + bm−1(jω)m−1 + . . . + (b1jω) + b0

� 
ejωt 
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H ( s )u ( t )  =  e y   ( t )  =  H ( j w ) ej w t j w ts s
L i n e a r  S y s t e m

or

bm(jω)m + bm−1(jω)m−1 + . . . + b1(jω) + b0

A = 
an(jω)n + an−1(jω)n−1 + . . . + a1(jω) + a0 

Examination of this equation shows its similarity to the transfer function H(s), in fact 

A = H(s) s=jω = H(jω)|
so that the steady-state response yss(t) is 

yss(t) = yp(t) = Aejωt = H(jω)ejωt, (1) 

or in other words, the steady-state response to a complex exponential input is defined by 
the transfer function evaluated at s = jω, or along the imaginary axis of the s-plane. Note 
that H(jω) is in general complex. 

We now extend this argument to a real sinusoidal input, for example u(t) = cos (ωt) = 
(ejωt + e−jωt)/2. The principle of superposition for linear systems allows us to express the 
response as the sum of the two responses to the complex exponentials: 

yss(t) = 
1 �

H(jω)ejωt + H(−jω)e−jωt
� 

2 

We now proceed as follows: 

We show that H(−jω) = H(jω) where H(jω) denotes the complex conjugate (see the • 
Appendix), so that 

yss(t) = 
1 �

H(jω)ejωt + H(jω)e−jωt
� 

(2)
2 

• We break up H(jω) into its real and imaginary parts, 

H(jω) = 

H(jω) = 

and use the Euler formula to write 

� {H(jω)} + j� {H(jω)} 

� {H(jω)} − j� {H(jω)} 

ejωt 

e−jωt 

= 

= 

cos (ωt) + j sin (ωt) 

cos (ωt) − j sin (ωt) 

• We combine the real and imaginary parts of Eq. (2) to conclude 

yss(t) = � {H(jω)} cos(ωt) − � {H(jω)} sin(ωt) (3) 
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We then use the trig. identity • 

a cos θ − b sin θ = 
√

a2 + b2 cos(θ + φ)


to write Eq. (3) as


yss(t) = H(jω) cos (ωt + � H(jω)) (4)| | 
where


H(jω) = 
�
�2 {H(jω)} + �2 {H(jω)}
|

H(jω) 

| 
= arctan 

��{H(jω)}�


�{H(jω)} 

Equation (4) states the answer we seek. It shows that


The steady-state sinusoidal response is a sinusoid of the same angular frequency • 
as the input,


The response differs from the input by (i) a change in amplitude as defined by
• 
|H(jω)|, and (ii) an added phase shift � H(jω). 

H(jω) is known as the frequency response function. H(jω) is the magnitude of the frequency | |
response function, and � H(jω) is the phase. 
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Note that if H(jω) > 1 the sinusoidal input is amplified, while if H(jω) < 1 the input is | | | |
attenuated by the system. 

Example 1 

The mechanical system 

has a transfer function 
vm(s) 1 

H(s) = = 
F (s) ms + B 

where m = 1 kg, and B = 2 Ns/m. Find the steady-state response if F (t) = 
10 sin(5t). 

1 
H(s) = 

s + 2 
so that the frequency response function is 

H(jω) = H(s) s=jω = 
1 

=
2 − jω |

jω + 2 ω2 + 4 

Then 
1 ω 

H(jω) = , H(jω) = arctan 
� � 

.| | √
ω2 + 4 

� − 
2 

With ω = 5 rad/s, 

vss(t) = 10
10
|H(jω)| sin(5t + � H(jω) 

= √
29 

sin(5t − arctan 2.5) 

= 1.857 sin(5t − 1.1903) 

Example 2 

Plot the variation of H(jω) and H(jω) from ω = 0 to 10 rad/s. 

From above 
1 ω 

H(jω) = , and H(jω) = arctan 
� � 

.| | √
ω2 + 4 

� − 
2 

These functions are plotted below: 
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Note that 

•	 As the input frequency ω increases, the response magnitude decreases. 

•	 At low frequencies the phase is a small negative number, but as the frequency 
increases the phase lag increases and apparently is tending toward −90◦ at 
high frequencies. 
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Appendix: Evaluation of H(−jω). 

We start with 
bm(jω)m + bm−1(jω)m−1 + . . . + b1(jω) + b0

H(jω) = 
an(jω)n + an−1(jω)n−1 + . . . + a1(jω) + a0 

so that 
bm(−jω)m + bm−1(−jω)m−1 + . . . + b1(−jω) + b0

H(−jω) = 
an(−jω)n + an−1(−jω)n−1 + . . . + a1(−jω) + a0 

Note that 
(jω)k = (−1)k/2ωk k even 

j(−1)(k−1)/2ωk k odd 

(−jω)k = (−1)k/2ωk k even 
−j(−1)(k−1)/2ωk k odd 

Thus in both H(jω) and H(−jω) 

The terms with even powers of ±jω in the numerator and denominator of H(jω) and • 
H(−jω) generate real terms, while 

the terms with odd powers of ±jω generate imaginary terms. • 

With these substitutions, comparison of H(jω) and H(−jω) shows 

The real terms (even powers of ±jω) are the same, while •


The imaginary terms (odd powers of ±jω) have opposite signs
• 

leading to the conclusion 

H(−jω) = H(jω).
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