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Lecture 311 

Reading: 

Nise: 10.1 • 

• Class Handout: Frequency Response and Bode Plots 

1 Sinusoidal Frequency Response (continued) 

In Lecture 30 we saw that the steady-state response of a linear system with transfer function 
H(s) to a sinusoidal input 

u(t) = A sin(ωt + θ) 

is 
yss(t) = A H(jω) sin (ωt + θ + � H(jω))| | 

where 

H(jω) = {H(jω)} + �2 {H(jω)}| | 
�
�2 

H(jω) = arctan 

��{H(jω)}� 

�{H(jω)} 

We note that 
H(jω) = H(s) s=jω ,|

that is H(jω) is H(s) evaluated along the imaginary axis of the s-plane. 

1copyright c D.Rowell 2008 
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1.1 The Frequency Response of Systems with Zeros 

If a system has a transfer function 
N(s)

H(s) = 
D(s) 

the frequency response function is 

N(jω)
H(jω) = . 

D(jω) 

For complex a and b, a/b = a / b and (a/b) = b, so that | | | | | | � � a − � 

N(jω)
�
�2 {N(jω)} + �2 {N(jω)} 

(1)|H(jω)| = ||D(jω)|
| 

= ��2 {D(jω)} + �2 {D(jω)} 

H(jω) = N(jω) − D(jω) = arctan 

��{N(jω)}� 

− arctan 

��{D(jω)}� 

(2) �{N(jω)} �{D(jω)} 

Example 1 

Find and plot the frequency response of 

s + 5 
H(s) = 

s + 10 

The frequency response function is 

jω + 5 
H(jω) = 

jω + 10 

and 

N(jω)
√

ω2 + 25 |H(jω)| = 
|
|D(jω)|

| 
= √

ω2 + 100 

H(jω) = N(jω) − D(jω) = arctan 
�ω � 

− arctan 
� ω �� � � 

5 10 

The following MATLAB commands were used to plot the frequency response: 

w=0:.2:100; 
sys=zpk(-5,-10,1) 
y=freqresp(sys,w); 
plot(w,squeeze(abs(y))) 
plot(w,squeeze(angle(y))) 

which produced the following plots: 
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We note that 

• When ω = 0, |H(jω)| = 0.5 and � H(jω) = 0◦. 

• When ω →∞, |H(jω)| → 1 and � H(jω) → 0◦. 

Example 2 

Find the frequency response functions for (i) a differentiator, and (ii) an integra­
tor. 
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(i)	 A differentiator. The transfer function is H(s) = s, so that H(jω) = jω. 
Then 

π |H(jω)| = ω, � H(jω) = 
2 

(or +90◦) 

(ii)	 An integrator. The transfer function is H(s) = 1/s, so that H(jω) = 1/jω. 
Then 

1	 π |H(jω)| = 
ω

, � H(jω) = − 
2 

(or -90◦) 

1.2 The Frequency Response of a Second-Order System 

Consider the unity-gain second-order system: 

ω2 

H(s) = n 

s2 + 2ζωns + ω2 
n 

The frequency response is 
ω2 

H(jω) = n 

−ω2 + j2ζωnω + ω2 
n 

so that 
ω2 

(3)|H(jω)| =�
(ωn 

2 − ω2)2 

n 

+ (2ζωnω)2 

2ζωnω � H(jω) = − tan−1 

ω2 
(4) 

n − ω2 

Equations (3) and (4) show the following: 

When ω = 0, H(jω) = 1 | | 
� H(jω) = 0 

When H(jω) 0ω →∞, | | → 
� H(jω) → −π (or -180◦) 

1 
When ω = ωn, H(jω) =| | 

2ζ 
π � H(jω) = − 
2 

(or -90◦) 

The response of the system to frequencies close to the undamped natural frequency clearly 
depends on the damping ratio ζ. For a lightly damped system ζ < 0.5, H(jωn) > 1 and | |
the system demonstrates amplification due to resonance. 

Differentiation of Eq. (4) shows the ωpeak, the frequency of the peak response is not ωn 

but is in fact 
ωp = ωn

�
1 − 2ζ2 
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for ζ < 1/
√

2, and 
1 |H(jωp)| =

2ζ
�

1 − ζ2 
. 

Frequency response plots for several values of ζ are shown below: 

Example 3 

A tall slender structure, excited by wind forces, is modeled as a mass-spring­
damper system. Find the frequency response of the displacement x of the building 
to a sinusoidal wind loading. 
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m
K

B

F s
( w i n d  f o r c e )

m 1
F s

( w i n d  f o r c e )

x  

B   -  e q u i v a l e n t  d a m p i n g
c o e f f i c i e n t
K   -  e q u i v a l e n t  l a t e r a l
s t i f f n e s s

x

The transfer function is 
X(s) 1 1 

H(s) = = H(jω) = 
Fs(s) ms2 + Bs + K 

→ 
(K − mω2) + jBω 

1 |H(jω)| = �
(K − mω2)2 + (Bω)2 

Bω � H(jω) = − tan−1 

K − mω2 

With values m = 5.11 kg, B = 0.77 N-s/m, and K = 2020 N/m, 

ωn = 
�

K/m = 19.9 rad/s 

ζ = B/(2mωn) = 0.0038 N-s/m 

and the system is very lightly damped. The frequency response is plotted below: 
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Note the extremely sharp and high resonant peak in the magnitude plot, and the 
rapid phase transition about resonance in the phase plot. 

1.3 Frequency Response and the Pole-Zero Plot 

The frequency response may be written in terms of the system poles and zeros by substituting 
directly into the factored form of the transfer function: 

H(jω) = K 
(jω − z1)(jω − z2) . . . (jω − zm−1)(jω − zm) 

. (5)
(jω − p1)(jω − p2) . . . (jω − pn−1)(jω − pn) 

Because the frequency response is the transfer function evaluated on the imaginary axis of 
the s-plane, that is when H(s)jω, the graphical method for evaluating the transfer function 
may be applied directly to the frequency response. Each of the vectors from the n system 
poles to a test point s = jω has a magnitude and an angle: 

|jω − pi| = 
�

σ2 + (ω − ωi)2 ,i 

� (s − pi) = tan−1 

�
ω 
−
−
σ

ω

i

i 
� 

, 

as shown above, with similar expressions for the vectors from the m zeros. The magnitude 
and phase angle of the complete frequency response may then be written in terms of the 
magnitudes and angles of these component vectors �m (jω − zi)

H(jω) = K i=1| | 
m

�
i
n 
=1 |
|
(jω − pi)

|
|
n

H(jω) = 
� 

(jω − zi) − 
� 

(jω − pi). 
i=1 i=1 

If the vector from the pole pi to the point s = jω has length qi and an angle θi from the 
horizontal, and the vector from the zero zi to the point jω has a length ri and an angle φi, 
the value of the frequency response at the point jω is 

r1 . . . rm |H(jω)| = K
q1 . . . qn 

� H(jω) = (φ1 + . . . + φm) − (θ1 + . . . + θn) 
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Example 4 

Explain the nature of the sinusoidal response of a first-order system with a pole 
on the real axis at s = −1/τ as shown below, in terms of the pole-zero plot. 

Even though the gain constant K cannot be determined from the pole-zero plot, 
the following observations may be made directly by noting the behavior of the 
magnitude and angle of the vector from the pole to the imaginary axis as the 
input frequency is varied: 

•	 At low frequencies the gain approaches a finite value, and the phase angle 
has a small but finite lag. 

•	 As the input frequency is increased the gain decreases (because the length 
of the vector increases), and the phase lag also increases (the angle of the 
vector becomes larger). 

•	 At very high input frequencies the gain approaches zero, and the phase angle 
approaches π/2. 

1.3.1 High Frequency Response 

As ω →∞ we note the following 
Magnitude Response: The magnitude response for the s-plane is 

r1 . . . rm |H(jω)| = K
q1 . . . qn 

and at high frequencies all vectors have approximately the same length, that is 

ri ≈ qj ≈ ω for i = 1 . . .m, j = 1 . . . n 
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A s  w  b e c o m e s  l a r g e :
1 )  A l l  v e c t o r s  h a v e  a p p r o x .
    t h e  s a m e  l e n g t h  (  @  w )
2 )  A l l  a n g l e s  a r e  a p p r o x .
    p / 2

w

@  p / 2

@  w

Then

1 

lim H(jω) = K 
ωn−mω→∞ 

| | 

Phase Response: From the pole-zero plot 

� H(jω) = (φ1 + . . . + φm) − (θ1 + . . . + θn) 

As ω becomes large all of the angles of the vectors approach π/2, 

π 
φi ≈ θj ≈ 

2 
for i = 1 . . . m, j = 1 . . . n 

and 
π 

lim H(jω) = −(n − m)
ω→∞ 

� 
2 

Then


n > m n = m n < m 
limω→∞ |H(jω)|
limω→∞ � H(jω) 

0 K 
0 

∞
−(n − m)π/2 (m − n)π/2 

If a system has an excess of poles over the number of zeros (n > m) the magnitude of the 
frequency response tends to zero as the frequency becomes large. Similarly, if a system has 
an excess of zeros the gain increases without bound as the frequency of the input increases. 
(This cannot happen in physical energetic systems because it implies an infinite power gain 
through the system.) 
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