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1 Bode Plots (continued 

1.1 Logarithmic Amplitude and Frequency Scales: 

1.1.1 Logarithmic Amplitude Scale: The Decibel 

Bode magnitude plots are frequently plotted using the decibel logarithmic scale to display the 
function H(jω) . The Bel, named after Alexander Graham Bell, is defined as the logarithm | |
to base 10 of the ratio of two power levels. In practice the Bel is too large a unit, and the 
decibel (abbreviated dB), defined to be one tenth of a Bel, has become the standard unit of 
logarithmic power ratio. The power flow P into any element in a system, may be expressed 
in terms of a logarithmic ratio Q to a reference power level Pref : 

Q = log10 

� P 
� 

Bel or Q = 10 log10 

� P 
� 

dB. (1) Pref Pref 

Because the power dissipated in a D–type element is proportional to the square of the 
amplitude of a system variable applied to it, when the ratio of across or through variables is 
computed the definition becomes 

� 
A 

�2 � 
A 

�
Q = 10 log10 = 20 log10 dB. (2)

Aref Aref 

where A and Aref are amplitudes of variables. 

Note: This definition is only strictly correct when the two amplitude quantities are 
measured across a common D–type (dissipative) element. Through common usage, 
however, the decibel has been effectively redefined to be simply a convenient loga­
rithmic measure of amplitude ratio of any two variables. This practice is widespread 
in texts and references on system dynamics and control system theory. 

The table below expresses some commonly used decibel values in terms of the power and 
amplitude ratios. 
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Decibels Power Ratio Amplitude Ratio 
-40 0.0001 0.01 
-20 0.01 0.1 
-10 0.1 0.3162 
-6 0.25 0.5 
-3 0.5 0.7071 
0 1.0 1.0 
3 2.0 1.414 
6 4.0 2.0 

10 10.0 3.162 
20 100.0 10.0 
40 10000.0 100.0 

The magnitude of the frequency response function H (jω) is defined as the ratio of the | |
amplitude of a sinusoidal output variable to the amplitude of a sinusoidal input variable. 
This ratio is expressed in decibels, that is 

Y (jω)
20 log10 |H(jω)| = 20 log10 

|
U(jω)

| 
dB. | | 

As noted this usage is not strictly correct because the frequency response function does not 
define a power ratio, and the decibel is a dimensionless unit whereas H (jω) may have | |
physical units. 

Example 1 

An amplifier has a gain of 28. Express this gain in decibels. 

We note that 28 = 10 × 2 × 1.4 ≈ 10 × 2 
√

2. The gain in dB is therefore 
20 log10 10 + 20 log10 2 + 20 log10 

√
2, or 

× 

Gain(dB) = 20 + 6 + 3 = 29 dB. 

The advantages of a logarithmic amplitude scale include: 

• Compression of a large dynamic range. 

• Cascaded subsections may be handled by addition instead of multiplication, that is 

log( H1(jω)H2(jω)H3(jω) ) = log( H1(jω) ) + log( H2(jω) ) + log( H3(jω) )| | | | | | | |

which is the basis for the sketching rules.


High and low frequency asymptotes become straight lines when log( H(jω) ) is plotted
• 
against log(ω). 

| |
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1.1.2 Logarithmic Frequency Scales 

In the Bode plots the frequency axis is plotted on a logarithmic scale. Two logarithmic units 
of frequency ratio are commonly used: the octave which is defined to be a frequency ratio of 
2:1, and the decade which is a ratio of 10:1. 

Given two frequencies ω1 and ω2 the frequency ratio W = (ω1/ω2) between them may be 
expressed logarithmically in units of decades or octaves by the relationships 

W	 = log2(ω1/ω2) octaves 

= log10(ω1/ω2) decades. 

The terms “above” and “below” are commonly used to express the positive and negative 
values of logarithmic values of W . A frequency of 100 rad/s is said to be two octaves (a 
factor of 22) above 25 rad/s, while it is three decades (a factor of 10−3) below 100,000 rad/s. 

1.2 Asymptotic Bode Plots of Low-Order Transfer Functions 

The Bode plots consist of (1) a plot of the logarithmic magnitude (gain) function, and (2) a 
separate linear plot of the phase shift, both plotted on a logarithmic frequency scale. In this 
section we develop the plots for first and second-order terms in the transfer function. The 
approximate sketching methods described here are based on the fact that an approximate 
log–log magnitude plot can be derived from a set of simple straight line asymptotic plots 
that can be easily combined graphically. 

The system transfer function in terms of factored numerator and denominator polyno­
mials is 

H(s) = K 
(s − z1)(s − z2) . . . (s − zm−1)(s − zm) 
(s − p1)(s − p2) . . . (s − pn−1)(s − pn) 

, (3) 

where the zi, for i = 1, . . . , m, are the system zeros, and the pi, for i = 1, . . . , n, are the 
system poles. 

In general a system may have complex conjugate pole and zero pairs, real poles and zeros, 
and possibly poles or zeros at the origin of the s-plane. Bode plots are constructed from a 
rearranged form of Eq. (??), in which complex conjugate poles and zeros are combined into 
second-order terms with real coefficients. For example a pair of complex conjugate poles 
si, si+1 = σi ± jωi is written 

1 
����

� 
1 

� 
1 

(s − (σi + jωi)) (s − (σi − jωi)) 
= 

ω2 (1 − (ω/ωn)2) + j2ζω/ωn 
(4) 

s=jω n 
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and described by parameters ωn and ζ. The constant terms 1/ωn 
2 is absorbed into a redefi­

nition of the gain constant K. 
In the following sections Bode plots are developed for the first and second-order numerator 

and denominator terms: 

1.2.1 Constant Gain Term: 

The simplest transfer function is a constant gain, that is H(s) = K. 

|H(jω)| = K and � H(jω) = 0, 

and converting to the logarithmic decibel scale 

20 log10 H(jω) = 20 log10 K and H(jω) = 0 dB. 

The Bode magnitude plot is a horizontal line at the appropriate gain and the phase plot is 
identically zero for all frequencies. 

1.2.2 A Pole at the Origin of the s-plane: 

A single pole at the origin of the s-plane, that is H(s) = 1/s, has a frequency response 

1 |H(jω)| = 
ω 

and � H(jω) = −π/2. 

The value of the magnitude function in logarithmic units is 

log |H(jω)| = − log(ω) 

or using the decibel scale 

20 log10 |H(jω)| = −20 log10(ω) dB. 

The decibel based Bode magnitude plot is therefore a straight line with a slope of -20 
dB/decade and passing through the 0 dB line ( H(jω) = 1) at a frequency of 1 rad/s. The | |
phase plot is a constant value of −π/2 rad, or −90◦, at all frequencies. The magnitude Bode 
plot for this system is shown below. 
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1.2.3 A Single Zero at the Origin: 

A single zero at the origin of the s-plane, that is H(s) = s, has a frequency response H(jω) 
with magnitude and phase 

|H(jω)| = ω and � H(jω) = π/2. 

The logarithmic magnitude function is therefore 

log H(jω) = log(ω)| | 
or in decibels 

20 log10 H(jω) = 20 log10(ω) dB. | | 
The Bode magnitude plot is a straight line with a slope of +20 dB/decade. This curve also 
has a gain of 0 dB (unity gain) at a frequency of 1 rad/s. The phase plot is a constant of 
π/2 radians, or +90◦, at all frequencies. The magnitude plot is shown in below. 

1.2.4 A Single Real Pole 

The frequency response of a unity-gain single real pole factor is 

1 
H(s) = ,

τs + 1

and the frequency response is: 

1 |H(jω)| = �
(ωτ)2 + 1 

and � H(jω) = tan−1(−ωτ). 

The logarithmic magnitude function is 

log |H(jω)| = −0.5 log 
�
(ωτ)2 + 1

� 
, 

or as a decibel function 

20 log10 |H(jω)| = −10 log10 

�
(ωτ)2 + 1

� 
dB. 
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•	 When ωτ � 1, the first term may be ignored and the magnitude may be approximated 
by a low-frequency asymptote 

ωτ 
lim 

0 
20 log10 |H(jω)| = −10 log10(1) = 0 dB 

→

which is a horizontal line on the plot at 0dB (unity) gain. 

•	 At high frequencies, for which ωτ � 1, the unity term in the magnitude expression may 
be ignored and the magnitude function is approximated by a high-frequency asymptote 

20 log10 |H(jω)| ≈ −10 log10((ωτ )2) = −20 log10(ω) − 20 log10(τ) dB. 

which is a straight line when plotted against log(ω), with a slope of -20 dB/decade. 

•	 The high and low frequency asymptotes intersect on the plot on the 0 dB line at a 
corner or break frequency of ω = 1/τ . We note that when ω = 1/τ the magnitude is 
|H(jω)| = 1/

√
2 or -3 dB. 

The complete asymptotic Bode magnitude plot as defined by these two line segments is shown 
in (a) below using a normalized frequency axis. The exact response is also shown in the figure; 
at the break frequency ω = 1/τ the actual response is 20 log10 |H(jω)| = −10 log10(2) = −3 
dB. 
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The phase characteristic is also plotted against a normalized frequency scale in (a). At low 
frequencies the phase shift approaches 0 radians. It passes through a phase shift of −π/4 
radians at the break frequency ω = 1/τ , and asymptotically approaches a maximum phase 
lag of −π/2 radians as the frequency becomes very large. A piece-wise linear approximation 
may be made by assuming that the curve has a phase shift of 0 radians at frequencies more 
than one decade below the break frequency, a phase shift of −π/2 radians at frequencies 
more than a decade above the break frequency, and a linear transition in phase between 
these two frequencies on the logarithmic frequency scale. This approximation is within 0.1 
radians of the exact value at all frequencies. 

1.2.5 A Single Real Zero 

A numerator term, corresponding to a single real zero, written in the form H(s) = τs + 1 
(where τ is not strictly a time constant), is handled in a manner similar to a real pole. In 
this case 

H(jω) = jωτ + 1 

and the magnitude and phase responses are 

|H(jω)| = 
�

1 + (ωτ)2 and � H(jω) = tan−1(ωτ ) 

respectively. In decibels the magnitude expression is


20 log10 H(jω) = 10 log10(1 + (ωτ)2) dB. | | 

The low frequency asymptote is found by assuming that ωτ � 1 in which case • 

lim 20 log10 H(jω) = 10 log10(1) = 0 dB, 
ωτ 0 

| |
→

The high frequency asymptote is found by assuming that ωτ � 1,• 

20 log10 |H(jω)| ≈ 20 log10(ωτ) = 20 log10(ω) − 20 log10(τ) dB when ω � 1/τ 

which is a straight line on the log-log plot, with a slope of +20 dB/decade. 

The break frequency, defined by the intersection of these two asymptotes is at a fre­• 
quency ω = 1/τ , and at this frequency the exact value of |H(jω)| is √2 or +3 dB. 
The complete asymptotic Bode magnitude plot using a normalized frequency scale is 
shown below. 

The phase characteristic asymptotically approaches 0 radians at low frequencies and ap­
proaches a maximum phase lead of π/2 radians at frequencies much greater than the break 
frequency. At the break frequency the phase shift is π/4 radians. A piece-wise linear ap­
proximation, similar to that described for a real pole, is also shown below. 
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1.2.6 Complex Conjugate Pole Pair: 

The classical second-order system, 

H(s) = 
ω2 

n 

s2 + 2ζωns + ωn 
2 

has a frequency response 

1 

2 2
|H(jω)| =�

(1 − (ω/ωn)2) + (2ζ(ω/ωn))

and H(jω) = tan−1 −2ζ (ω/ωn) � �
1 − (ω/ωn)2� 

. 

In logarithmic units the magnitude response is


)2
�2 

20 log10 |H(jω)| = −10 log10 

��
1 − (ω/ωn + (2ζ(ω/ωn))2

� 

The Bode forms of the magnitude and phase responses are plotted in below, with the damping 
ratio ζ as a parameter. 
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• The low-frequency asymptote is found by assuming that ω/ωn � 1 so that 

lim (20 log10 H(jω) ) = −10 log10(1) = 0 dB. 
(ω/ωn) 0 

| |
→

•	 The high frequency response can be found by retaining only the dominant term when 
ω/ωn � 1: 

20 log10 |H(jω)| ≈ −10 log10 

�
(ω/ωn)4� 

= −40 log10 (ω) + 40 log10 (ωn) dB when ω � ωn, 

which is a linear function of log10 ω with a slope of -40 dB/decade. 

•	 The two asymptotes intersect at a break frequency of ω = ωn as shown below. The 
straight line asymptotic form does not account in any way for the damping ratio. 

The phase characteristic asymptotically approaches 0 radians at low frequencies, has a 
phase lag of −π/2 at the break frequency ωn, and approaches −π radians at high frequencies. 
The steepness of the transition is a function of the damping ratio ζ and so must be sketched 
using the information contained above. 

The resonance peak (for values of ζ < 0.707) must be sketched in after the asymptotes 
have been drawn. The figure below plots the logarithmic magnitude correction and frequency 
of the resonant peak as a function of ζ; it is a simple matter to sketch in the resonant peak 
from these values. 
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1.2.7 Complex Conjugate Zero Pair 

Bode plots for a pair of complex conjugate zeros can be derived in a manner similar to the 
conjugate pole pair described above. In this case the block is assumed to have a transfer 
function 

H(s) = 
1 
ω2 

�
s 2 + 2ζωns + ω2 

n

� 

n 

and a frequency response 

�
2 2 |H(jω)| = (1 − (ω/ωn)2) + (2ζ(ω/ωn))

and H(jω) = tan−1 2ζ (ω/ωn) � �
1 − (ω/ωn)2� . 

The logarithmic magnitude response is 

)2
�2 

20 log10 |H(jω)| = 10 log10 

��
1 − (ω/ωn + (2ζ(ω/ωn))2

� 
dB 

The asymptotic responses are derived in a similar manner to the complex pole pair; the low 
frequency asymptote is 

lim (20 log10 H(jω) ) = 10 log10(1) = 0 dB, 
(ω/ωn) 0 

| |
→

and the high frequency asymptote is 

20 log10 |H(jω)| ≈ 10 log10 

�
(ω/ωn)4� 

= 40 log10 (ω) − 40 log10 (ωn) dB for ω � ωn. 

The exact form of the magnitude response is plotted below. This is effectively an inverse 
of the characteristic of complex-conjugate pole pair described above. There is a “notch” in 
the response in the region of the frequency ωn, and the depth is a function of the parameter 
ζ. The plot has a low frequency asymptote of 0 dB, a break frequency of ω = ωn, and a 
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high-frequency asymptote is a straight line with a slope of +40 dB/decade. The phase char­
acteristic is also a flipped version of that of a pair of complex conjugate poles; it approaches 
0 radians at low frequencies, passes through −π/2 at the break frequency, and shows a max­
imum phase lead of π radians at high frequencies. As above, the slope of the curve in the 
transition region is dependent on the value of ζ. 

1.2.8 Summary 

The essential features of the asymptotic forms of the seven components of the magnitude 
plot are summarized below. 
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Description Transfer Function Break Frequency 

(radians/sec.) 

High Frequency Slope 

(dB/decade) 

Constant gain 

Pole at the origin 

Zero at the origin 

Real pole 

Real zero 

Conjugate poles 

Conjugate zeros 

K 
1 
s 
s 
1 

τs + 1 
(τs + 1) 

ω2 
n 

s2 + 2ζωns + ω2 
n 

1 
ω2 

n 

(s 2 + 2ζωns + ω2 
n) 

-

-

-

1/τ 

1/τ 

ωn 

ωn 

0 

-20 

+20 

-20 

+20 

-40 

+40 
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