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Massachusetts Institute of Technology 
Department of Mechanical Engineering 

2.004 Dynamics and Control II 
Spring Term 2008 

Lecture 341 

Reading: 

Nise: 10.1 • 

• Class Handout: Sinusoidal Frequency Response 

1 Bode Plots (continued 

In Lecture 33 we developed the following asymptotic Bode Plot s for low-order systems: 

Pole/Zero at the Origin: 

1 
H(s) = and H(s) = s 

s 

1copyright c D.Rowell 2008 
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Single Real Pole/Zero:


1 
H(s) = and H(s) = τs + 1 

τs + 1 
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Complex Conjugate Real Pole/Zero pair:


ω2 1nH(s) = 
s2 + 2ζωns + ωn 

2 
and H(s) = 

ωn 
2 

�
s 2 + 2ζωns + ωn

2 
� 

Description Transfer Function Break Frequency High Frequency Slope 

(radians/sec.) (dB/decade) 

Constant gain K - 0 
1 

Pole at the origin 

Zero at the origin 

Real pole 

Real zero 

Conjugate poles 

Conjugate zeros 

s 
s 
1 

τs + 1 
(τs + 1) 

ω2 
n 

s2 + 2ζωns + ω2 
n 

1 
ω2 

n 

(s 2 + 2ζωns + ω2 
n) 

-

-

1/τ 

1/τ 

ωn 

ωn 

-20 

+20 

-20 

+20 

-40 

+40 
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1.1 Bode Plots of Higher Order Systems 

If a system with transfer function H(s) = KN(s)/D(s) is expressed as a product of the 
terms in the table above, that is 

N(s)
H(s) = K 

D(s) 
1 1 

= K �(N1(s) . . . Nm(s)) × (
D1(s) 

. . . 
Dn(s)

) 

where the factors Ni(s) are first- or second-order zero terms, and the Di(s) are pole terms, 
and K � is a modified constant factor. For example 

10(s + 3) 1 1 
H(s) = = K �N1(s)

(s + 0.5)(s + 5) D1(s) D2(s) 
1 1 1 

= 12 × (
3 
s + 1) × 

2s + 1 
× 

0.2s + 1 
. 

When complex numbers are represented in polar form, the magnitude of a product is the 
product of the component magnitudes, and the angle of a product is the sum of the compo­
nent angles, the frequency response may be expressed in terms of its magnitude and phase 
functions: 

����
1 

����
����

1 
����|H(jω)| = K � × |N1(jω)| × . . . × |Nm(jω)| × 

D1(jω) 
× . . . × 

Dn(jω) 
1 1 � H(jω) = � N1(jω) + . . . + � Nm(jω) + � 

D1(jω)
+ . . . + � 

Dn(jω) 

The logarithm of a product is the sum of the logarithms of its factors, so that 

����
1 

����
����

1 
log H(jω) = log K � + log N1(jω) + . . . + log Nm(jω) + log + . . . + log| | | | | | 

D1(jω) Dn(jω) 
1 1 � H(jω) = � N1(jω) + . . . + � Nm(jω) + � + . . . + �

D1(jω) Dn(jω) 

which express the overall magnitude and phase responses as a sum of component responses of 
first and second-order elementary “building blocks”. In practice Bode plots are constructed 
by graphically adding the individual response components. Given the transfer function H(s) 
of a linear system, the following steps are used to construct the Bode magnitude plot: 

1. Factor the numerator and denominator of the transfer function into the constant, first-
order and quadratic terms in the form described in the previous section. 

2. Identify the break frequency associated with each factor. 

3. Plot the asymptotic form of each of the factors on log–log axes. 

4. Graphically add the component asymptotic plots to form the overall plot in straight 
line form. 
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5. “Round out” the corners in the straight line approximate curve by hand, using the 
known values of the responses at the break frequencies (±3dB for first-order sections, 
and dependent upon ζ for quadratic factors). 

The phase plot is constructed by graphically by adding the component phase responses. The 
individual plots are drawn, either as the piece-wise linear approximation for the first-order 
poles, or in a smooth form from the exact plot, and then these are added to find the total 
phase shift at any frequency. 

Example 1 

Plot the Bode magnitude and phase plots of a first-order system described by 
the transfer function 

10(s + 1) 
H(s) = 

s + 10 
Solution: The transfer function is rewritten in terms of unity-gain blocks 

1 1 1 
H(s) = 10 × (s + 1) × 

10 
× 

0.1s + 1 
= (s + 1) × 

0.1s + 1 

with two component terms: 

1. A single real zero term H1(s) = (s + 1), with a break frequency of ω = 1 
radians/sec. 

2. A single real pole term H2(s) = 
0.1

1 
s+1 , with a break frequency of ω = 10 

radians/sec. 

The component terms are plotted and are added together to determine the total 
response for a frequency range of 0.01 to 1000 radians/sec. in the magnitude and 
phase plots below. 
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Example 2 

Plot the Bode magnitude and phase plots of a third-order system described by 
the transfer function 

40s + 4 
H(s) = 

s3 + 2s2 + 2s 

Solution: The transfer function is rewritten 

4(10s + 1) 
�

1
�� 

2 
�

H(s) = = 2 (10s + 1) 
s (s2 + 2s + 2) s s2 + 2s + 2 

indicating four component terms: 

1. A constant gain term of H1(s) = 2, 

2. A single real pole at the origin H2(s) = 1/s, 

3. A complex conjugate pole pair H(s) = 2/(s2 + 2s + 2), characterized by 
ωn = 

√
2 radians/sec. and a damping ratio of 

√
2/2, and 

4. A single real zero term H3(s) = (10s +1), with a break frequency of ω = 0.1 
radians/sec. 

The component terms are plotted and are added together to determine the total 
response for a frequency range of 0.01 to 100 radians/sec. in the magnitude and 
phase plots below. 
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1.2	 A Simple Method for constructing the Magnitude Bode Plot 
directly from the Pole-Zero Plot 

The pole-zero plot of a system contains sufficient information to define the frequency re­
sponse except for an arbitrary gain constant. It is often sufficient to know the shape of the 
magnitude Bode plot without knowing the absolute gain. The method described here allows 
the magnitude plot to be sketched by inspection, without drawing the individual compo­
nent curves. The method is based on the fact that the overall magnitude curve undergoes a 
change in slope at each break frequency. 

The first step is to identify the break frequencies, either by factoring the transfer function 
or directly from the pole-zero plot. Consider a typical pole-zero plot of a linear system as 
shown in (a) in the figure below. The break frequencies for the four first and second-order 
blocks are all at a frequency equal to the radial distance of the poles or zeros from the origin 
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of the s-plane, that is ωb = 
√

σ2 + ω2 . Therefore all break frequencies may be found by 
taking a compass and drawing an arc from each pole or zero to the positive imaginary axis. 
These break frequencies may be transferred directly to the logarithmic frequency axis of the 
Bode plot. 

Because all low frequency asymptotes are horizontal lines with a gain of 0dB, a pole or 
zero does not contribute to the magnitude Bode plot below its break frequency. Each pole 
or zero contributes a change in the slope of the asymptotic plot of ±20 dB/decade above its 
break frequency. A complex conjugate pole or zero pair defines two coincident breaks of ±20 
dB/decade (one from each member of the pair), giving a total change in the slope of ±40 
dB/decade. Therefore, at any frequency ω, the slope of the asymptotic magnitude function 
depends only on the number of break points at frequencies less than ω, or to the left on the 
Bode plot. If there are Z breakpoints due to zeros to the left, and P breakpoints due to 
poles, the slope of the curve at that frequency is 20 × (Z − P ) dB/decade. 

Any poles or zeros at the origin cannot be plotted on the Bode plot, because they are 
effectively to the left of all finite break frequencies. However, they define the initial slope. 
If an arbitrary starting frequency and an assumed gain (for example 0dB) at that frequency 
are chosen, the shape of the magnitude plot may be easily constructed by noting the initial 
slope, and constructing the curve from straight line segments that change in slope by units 
of ±20 dB/decade at the breakpoints. The arbitrary choice of the reference gain results in 
a vertical displacement of the curve. 

In (b) the straight line magnitude plot for the system is shown, constructed using this 
method. A frequency range of 0.01 to 100 radians/sec was arbitrarily selected, and a gain 
of 0dB at 0.01 radians/sec was assigned as the reference level. The break frequencies at 0, 
0.1, 1.414, and 5 radians/sec were transferred to the frequency axis from the pole-zero plot. 
The value of N at any frequency is Z − P , where Z is the number of zeros to the left, and 
P is the number of poles to the left. The curve was simply drawn by assigning the value of 
the slope in each of the frequency intervals and drawing connected lines. 
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