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2.016 Hydrodynamics 
Professor A.H. Techet 

0.1 Derivation of unsteady Bernoulli’s Equation 

Conservation of Momentum says 
m�a = F 

so 
D� �V F 

ρ�a = ρ = 
Dt V 

This is the acceleration and forces acting on Bob the Fluid Blob. The total derivative of the velocity is 
expanded like this: 
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For irrotational flow, ( � V = 0), so (� �)� 2 V · �V � V = �( 1 � V ) and �× � · 
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Also for irrotational flow, we can use the velocity potential � �V = �φ, and we have 

V ∂� 1 �ρ
D�

= ρ 
�φ 

+ �
Dt ∂t 

� 
2 
�φ · �φ 

The forces acting on Bob are pressure and gravity, so the momentum equation becomes 

�φ 
+ �ρ 

∂� 1 � �φ = −� ρg k = −� �(ρgz)
∂t 
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∂φ 1 � � � 
� ρ + ρ � � + p + ρgz = 0 � 
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And in one last glorious step, we integrate all the spacial derivatives (i.e. knock the nabla out), and we 
have the unsteady Bernoulli’s Equation; 

∂φ 1 � 
ρ + ρ � � + p + ρgz = F (t)

∂t 2 
�φ · �φ 

where F (t) is some function of t (is the ”constant of integration”). 
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