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Example of Slowly-Varying Drift Motion 
Excitation: Fx(t) =  f0 cos(ωt) + 0.1f0 cos(0.1ωt) 

Equation of Motion: M dd
2 

t2 
x = Fx(t) ½ ¾ 

Solution of motion: x((t)) = 
f0 

cos ωt +
0.1 

cos((0.1ωt))
2 2

− 
Mω2 0.12 

f0 
= − 

Mω2 
{cos ωt + 10  cos(0.1ωt)} 



Responses of Floating Structures in Ocean
q 
C Natural Frequency: ωn =

q 

(M+
C
Ma) 

• For surge, sway, and yaw: hydrostatic restoring coefficients C11, C22, C66 = 0  

ωn = 0 
→
Large-amplitude responses can be excited by slowly-varying excitations. 

• For structures with small water-plane area such as semi-submersibles, the 
hydrostatic restoring for heave, pitch, and roll are small, the natural 
frequencies are small. In this case, large-amplitude responses can also be 
excited by slowly-varying excitations. 

• In general, very little wave energy at low frequency is present in the ocean. Thus 
low freqquencyy wave excitation ((based on linear wave theory)  y) is small. Thus,, from 
linear theory, no large-amplitude slowly-varying responses can be caused by the 
action of waves!! 

• Source of slowlyy-varyy ging excitations: 
–Nonlinear wave structure interaction 
–Wind loads 



Source: Faltinsen, O. M. Sea Loads on Ships and Offshore Structures.

Cambridge University Press, 1993. © Cambridge University Press.
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Slowly-Varying Wave Force/Moment


zIncident wave: 

x 

yηI = A1 cos(ω1t − k1x) +  A2 cos(ω2t − k2x) 

Slowly-varying wave force/moment comes from: 

(1)(1) 22ndnd-ord hder hyddroddynamiic pressure ddue to thhe fi  first ordder wave 

(2) Interaction between the first-order motion and the first-order wave 

(3) 2nd-order potential due to slowly-varying forcing on body surface and free-surface 
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2nd-order Slowly-Varying Hydrodynamic Pressure 
C id  t i l l  i  i d  tConsider two simple plane progressive waves in deep water: 

Φ(x, z, t) =  − gA1 ek1z sin(ω1t − k1x) − gA2 ek2z sin(ω2t − k2x)ω1 ω2 

ηη((xx, t) = A cos(ω t k x) + A cos(ω t k x)t) = A1 cos(ω1t − k1x) + A2 cos(ω2t − k2x) 
P (x,z,t) ∂Φ 1We look at the pressure field of the wavefield: ρ = − ∂t − 2 ∇Φ ·∇Φ − gz 

+ Φ2 + Φ2∇ΦΦ ∇ΦΦ = ΦΦx 
2 + Φy + Φz∇ ∇

Φx = gA1k1 ek1z cos(ω1t − k1x) +  gA2k2 ek2z cos(ω2t − k2x)ω1 ω2 

Φ2 = + 2ω1ω2A1A2e
(k1+k2)z cos(ω1t − k1x) cos(ω2t − k2x) +x · · · · · ·  

= + ω1ω2A1A2e
(k1+k2)z{cos[(ω1 − ω2)t − (k1 − k2)x) + cos[(ω1 + ω2)t − (k1 + k2)x)}+· · · · · ·  

Sum-frequencyDifference –frequency 
2nd-order (slowly-varying) 
In wave amplitude 

(k +k )22ndd-ordder sllowlly-varyiing pressure component: ∼ A1A2e(k1+k2)z cos[(ω1 − ω2)t − (k1 − k2)x] 
Integration this slowly-varying pressure component over body surface to give 
slowly-varying force/moment 
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Interaction Between Body Motion and First-Order Wave


R R R 
F~ (t) =  

S(t) P (t)~nds = 
S0 
P (2)(t)~nds + 

∆S(t) P (1)(t)~nds 

2nd ∆S(t) ∼ A1 cos(ω1t + A2 cos(ω2t) 
pressure effect P (1)(t) ∼ A1 cos(ω1t + A2 cos(ω2t) 

2nd-ordder sllowlly varyiing 

Interaction gives 2nd-order 
Source: Faltinsen, O. M. Sea Loads on Ships and Offshore Structures. 
Cambridge University Press, 1993. © Cambridge University Press.
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2nd-Order Slowly-Varying Potential Due to Forcing on 

Body Surface and Free-Surface 


I id  t  

y 
zIncident wave: 

ηI = A1 cos(ω1t − k1x) +  A2 cos(ω2t − k2x) 

x 

~n 

Body has a first-order motion resulting from the action of the incident wave, for example, the heave motion: 
ζ3(t) =  a1 cos(ω1t) +  a2 cos(ω2t) 

General body boundary condition imposed on instantaneous body position SB(t): 
∂Φ dζ3(t)= nz = −nz [a1ω1 cos(ω1t) − ω2a2 sin(ω2t)]∂n dt ·

¯̄̄
 

Applying Taylor series expansion of the body boundary condition about the mean body position S̄B ¯̄



¯̄

 + ζ3(t) ∂2Φ · ∂Φ
 ∂Φ
=
 +


∂n SB (t) ∂n S̄B ∂z∂n · · · 

S̄ B ( ) B SB 

This terms gives slow-varying terms: 
∼ cos[(ω1 − ω2)t] 

∼ sin[(ω1 − ω2)t] 
Similar forcing terms are also obtained on the free-surface boundary condition. 

• These lead to a 2nd-order potential: Φ(2) ∼ cos[(ω1 − ω2)t]and sin[(ω1 − ω2)t] 

From Bernoulli equation, this potential gives a slowly-varying pressure  P (2) = −ρ ∂Φ
(2) 

∂t 



Determination of Slowly-Varying Wave Force/Moment


y 
z 

ηI = A1 cos(ω1t− k1x) +  A2 cos(ω2t− k2x) 

x 

~n 
Fj(t), J  = 1, · · · , 6 j(	) 

F sv(t) =  A1A2{Qjc cos(ω1 − ω2)t+ Qjs sin(ω1 − ω2)t} j = 1, , 6j 12	 12 · · ·

Qjc (ω1,ω2) and  Qjs 
12 12(ω1,ω2) are the slowly-varying force/moment transfer functions. 

How to find the slowly-varying force/moment transfer functions?? 

•	 By experiments ⎯ accurate measurement of 2nd-order slowly-varying 
force/moment is challenge in laboratory 

•	 By numerical computation ⎯ using WAMIT or other nonlinear computational tools 
(state-of-the-are research in this area is still going on….) 
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Determination of Slowly Varying Force/Moment in Irregular Seas 

•• Incident wave travels in x direction in deep water: Incident wave travels in x direction in deep water: 
NX 

ηI (x, t) =  A` cos(ω`t− k`x+ ² ̀ ) 
`=1 p
A`(ω`) =  2S(ω`)∆ω and ∆ω = (ωmax − ωmin)/N 

S(ω) is the spectrum of the irregular waves 

•SSlowly-varying fforce//moment on a ffloating body is given by: 
N N

1 XX n o 
F sv = A`Ak Q

jc cos[(ωk − ω`)t+ (² `)] + Qjs sin[(ωk − ω`)t+ (² `)]j 2 `k k − ² `k k − ² 
`=1 k=1 

jc jc js js 
j = 1, 2, . . . , 6 Q`k = Qk` and Q`k = −Qk` 

•Applying Newman’s Approximation: 

Qjc = Qjc = Qjc + Qjc and Qjs = Qjs = 0`k k` `` kk `k k` 

jc jcwhere Q`` and Qkk are the transfer function for drift force/moment, i.e. 

¯ jc ¯ jcFj(ω`) =  A2 
`Q`` and Fj(ωk) =  A2 

kQkk 
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Z
• Spectrum of the slowly-varying force/moment: Spectrum of the slowly varying force/moment: 

Z ∞ 
jcSF S (ω + µ)[Q``(ω + µ/2)]2dωSFj ((µµ)) = 88 S((ωω))SS(ω + µ)[Q (ω + µ/2)] dω 

0 
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F sv(t) 

x(t)x(t) 

Slowly-Varying Motion

Moored system in waves: D h  t  Moored system in waves: MMass-S iSpring-Dashpott system: 

c: mooring line spring equivalent 
b: total damping in the system 

Equation of motion:Equation of motion: 

(M +Ma)d
d
t

2

2 x(t) + b d
d 
t x(t) + cx(t) = F sv(t) 

In the freqquencyy domain: 
−ω2(M +Ma)X(ω) + iωbX(ω) + cX(ω) = f(ω) 

f(ω)
X(ω) =  [c−ω2(M+Ma)]+iωb
q
ωn =

c ωn ∼ 0.1 rad/s

M +Ma


c 

F sv( )F sv(t) 

X/f(ω) 

1 
c 

ωnMuch lower than wave freq. 



S ( )

Z
Z

Z

Spectrum of slowly-varying motion:


SF sv (ω)Sx(ω) =  [c−ω2(m+Ma)]2+b2ω2 ZVariance: Variance: ∞ ∞
σx = Sx(ω)dω Z0 

∞ SF sv ((ω)) 
= ddω 

0 [c − ω2(m + Ma)]2 + b2ω2 Z ∞ dω 
(m + Ma)]2

≈ SF sv (ωn) 
0 [[cc − ωω22(m + M )]2 ++ bb22ωω22 

π 
= SF sv (ωn)
2cb 

Source of c: mooring lines 

Source of b: (i) related to hull from ⎯ friction flow separation current/wind Source of b: (i) related to hull from ⎯ friction, flow separation, current/wind, 
wave drift damping 

(ii) mooring lines 
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