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Wave Radiation Problem

(o(1) = G cos(wt)
(3(t) = —w(3 sin(wt)

w, A, Vp, V4 (5(t) = —w?(3 cos(wt)
< \_A\
2a

Total: P(t) = —p%(f — pgz  Hydrodynamic: Py(t) = —p%cf = P;cos(wt — 1))

Hydrodynamic Force:

F3(t) = //S Pyn.dS = F; cos(wt — 1))

= I3 cos1)cos(wt) + Fysin sin(wt)
B _Fgcosw-- _ngmw-
— 53(4)2 € (t) §3w G3 (t)

= —As3(3(t) — B3s(3(t)
A5;: Added mass; Bg;: Wave damping




Physical Meaning of Wave Damping )
(3(t) = (3 cos(wt)
1 {3(t) = —w(3 sin(wt)
s (t) = —w?(3 cos(wt)

S PN

a

Energy

flux out :— _i
EVy < Control Volume —i+—> Energy

flux out

EV,

Averaged power into the fluid by the body:

B = 7 [ (RO}

_ % /o {A33&3(t)é3(t) + 33353(?5)@3(75)} dt = Bss(Gw)?/2

Averaged energy flux out of the control volume: Eflua: — 2VgE ~ 2Vga2

Conservation of energy: %—? — Em — Eflux — ()

> ng ~ (&/53)2 > O

« B,; =0 if a=0 corresponding to @ = «, 0




Mathematical Formulation of Heave Radiation Problem

I (3(t) = cos(wt)

Oy + 9P, =0 n(t) = —2:/g

Radiation condition:
Generated waves
must propagate away V& — 0 as
from the body

Deep water condition:

zZ— —00

Hydrodynamic Pressure: Pd(;E, Yy, =, t) — —P(I)t
Radiation Force R(t) — — fSB Pd’n,dS

—

Radiation Moment: R(t) — fSB Pd(f X ﬁ)ds



Frequency-Domain Formulation of Heave Radiation Problem

—w?¢3 + gP3. =0

= —iwds/g

Radiation condition

Let: .
(3(t) = coswt = R{e“}
z,

O(7,t) = R{gs(Z)e™’}

Py(Z,t) = R{pa(¥)e}
Fr(t) = R{fe}
Mg(t) = R{me™t)

Pa = —ipwds(T)
f: — fSB pdﬁdS
m= — fSB pd(a_f X ﬁ)dS

Deep water condition:

Vs -0 as 2z — —o0

far =ipw [g, d3nads
F3R(t) = —Aggég(t) — ngé(t) = %{[W2A33 — in33]ez'wt}

Thus,
Aszs =R { L s, ¢3n3d8} , DBzz3=-S {73,0 s, ¢3n3d8}
Az =N { i;p fSB ¢3n1d8} , B3 =-S {iﬂ fSB ¢3n1d8}

A237 3237 ceey A637 BGS

< A and B, are symmetric, i.e. A=A, B, =B, i=1, ..., 6;j=1, ..., 6
* Aij and Bij are functions of frequency ®
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Added-mass and damping coefficients for a sphere of diameter d, half sub-
merged in deep water, % is the displaced volume =d?/12. Also shown is the
heave-response ratio (190).


http://ocw.mit.edu/fairuse

Examples: Added Mass at Low Frequency

At low frequencies, i.e. w — 0:

2
%Nuﬂ—)O as w — 0

Thus, the free surface boundary conditoin becomes: ®,=0

(1) slender vertical circular cylinder (2) slender ship with a semi-circle
Cross section

Surge added mass Sway added mass
2

Wave damping =0 Wave damping =0




Examples: Added Mass at High Frequency

At high frequencies, i.e. w — oc:

2
%Ncﬂ%oo as w — 00

Thus, the free surface boundary conditoin becomes: ®=0

Slender ship with a semi-circle cross section:

mR? L

Heave added mass: mg33 = p=5

Wave damping =0



Hydrostatic Restoring Effect in Body Motion

| ¢ (t)
<
x -
=0 =
Wetted body surface: Sy Sp(t) = So + AS(t)
Hydrostatic pressure: P, = —pgz

— Hydrostatic restoring effect
Hydrostatic force: Fs = — [g_ () Pstids = — [ Poiids — [, g Pstids

\—> Balanced by other forces at equilibrium

Fy3(t) = pg [y, Vol = Fy3 — pgSus(t)
Swi :Water plane surface area of the body

C33 = pgSwi *Hydrostatic restoring coefficient (i.e. spring constant)

Hydrostatic momeni/, = fS P (Z x 7)ds = — fS (Z x )ds — fAS(t) P(Z x n)ds
Hydrostatic restoring force/moment:  Fj;3(t) = —Cis(s3(t), i=1,...,6

Ingeneral  F,;,(t) = — Z?:l CijC ,i=1,...,6 where C;is 6x6 restoring coef. matrix



Wave Diffraction Problem

7 Body is fixed

y
Lttt WSS
Radiation condition: —
diffracted waves must n Deep water condition:
Er%pagate away from the VP =20 as 2z — —o0
0
Y V2®(z,y,2,t) =0

Fy, Mg =777

Total potential:  &(Z,t) = ®;(Jxt) + ®p (&, t)
®; : Incident wave potential (of a plane progressive wave)
®p : Diffracted (or scattered) wave potential

Total dynamic pressure: P; = —p®r; — p®py —> Diffraction effect

Total wave excitations (force/moment): F}(t) = [ . p®@irids + [ Sp pPrinds = ﬁf + FD
Froude-Krylov force

—

Mp(t) = [g, p®n(Zx f)ds+ [ pPp:(T x f)ds = M; + Mp



Frequency-Domain Formulation of Wave Diffraction Problem

z y

—w?pp + gédp. =0 X p = —iw¢p/g

Radiation condition: ﬁ 9¢p _ _%
diffracted waves must n Deep water condition:
propagate away from the V(bD 0 as 2z — —o0

body V2¢p(z,y,2) =0

Incident 77[(3;7 Y, t) — acos(wt — ]{:x) —_ %{ae—ikmeiwt} — %{ﬁleiwt}

Diffraction potential: ®p(Z,t) = R{¢dp(Z)e™}

Total dynamic pressure: Py(7,t) = R{pq(Z)e™'}, pa(Z) =pr +pp
pr = —ipwer, PD = —ipwPp

Total wave excitations: ﬁE(t) = %{fEeM}, fE = fEI + fED
Froude-Krylov force: fer = — fSB prnds = ipw fSB ornds
Diffraction force: fED = — fSB ppnds = tpw fSB ¢pnds

Mg(t) = R{m et} mpE = Mmgr +Mgp



Heave Response of A Floating Body to Ambient Waves

Incident wave: 74 Ig‘i(t) = R{(e™t}, (=777
n; = acos(wt — kx) y

MM-Q%O

X n(t) ==2¢/g

SN -

Deep water condition:
V& -0 as z— —o0

\ 4

Sl

Vi0(x,y,z,t) =0

» Decompose the total problem into a sum of diffraction problem and radiation problem:
(I)(fa t) — (I)I('fa t) + (I)D(fa t) + ‘I)R(fa t)
Diffraction problem Radiation problem

» From the diffraction problem:
Wave excitation force: Fg3(t) = R{ fp3e™“!}, fEs = far + fap

* From the radiation problem:
Wave radiation force:  Fps(t) = — As3(s (t) — B33C.3(t) = R{(—w?As3 — iwBs3)(3e™t}

Hydrostatic restoring force.  Fg3 = —ngCg (t) = %{(—Cg,gég)ewt}



 Total hydrodynamic and hydrostatic forces:

Frs + Frs + Fo3 = R{[fr3 — (w?As3 + iwBs3 + C33)(3]e"!}

* Applying Newton’s second law: .
Fgs + Frs + Fo3 = m(3(t)

§R{(—w2m)ei“’t} = %{[ng - (—w2A33 + in33 + 033)63]67;“”5}

»
»

Equation of Motion: [_w2 (m + Ass) + iwBs3 + 033]53 = f31 + f3p

E _ fsrt+fsp
3 —w?(m-+Assz)+iwBss+Css

* Heave motion amplitude:

»
»

Response Amplitude Operator (RAO): (3(w) (far + fsp)/a
a w2 (m -+ A33) + 1wB33 + Css
(fsr + f3p)/a i

€

—w2(m + Agg) + twB33 + Css

: 2
Heave natural frequency: —wnB(m + A33) +C33=0 — w3, = <m33A333>



Analogy to a Simple Mass-Spring-Dashpot System
Y. ) Body displacement

p————

Body mass r-

- —

—f ]Cf + ) Excitation force

::' / X Spring constant

3
Damping coefficient

Equation of motion: m4 + bt 4 cx = f(t)

For harmonic excitation, f(t) = fo cos wt, we have harmonic response: Z(t) = zg cos(w + ), o =77

From equation of motion, we obtain: — fo — —1 —bw
| Lo = [(c—mw?)24+b2w?2]1/2 and o = tan (c—mwz)
. _ 1/2 T 1
Natural frequency: w, = (¢/m) 202 atw=0
fo ¢
iRy 1 ¢
— = —, at w=w
fO bwn’ "
L0

— 0, asw — o0

fo
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