2.04A Concepts

Linear time invariant systems

Solution in the time domain (ordinary differential equations – ODEs)

Solution in the Laplace domain (transfer function – TF)

Poles and zeros; their physical meaning Stability: stay on the left-hand plane

1st order systems

Impulse, step, and other responses

Time constant

Steady state

2nd order systems

Impulse, step, and other responses

Dominant pole (slow/fast poles)

Over-/critically/under-damped response

Damping ratio, natural frequency, damped oscillation frequency

Rise time, settling time, peak time, overshoot

Steady state

State space: formulation only

Eigenvalues of system matrix ⇔ system poles

Certain physical implementations

Flywheel

DC motor with flywheel load and with/without inductance

Simple RC / RL / RLC circuits, impedance and voltage divider

More generally: physical model => ODE => system behavior

Feedback

Feedback loop architecture and feedback transfer function

Feedback loop terminology: plant, controller, open/closed loop TFs

The significance of feedback gain and steady-state error

Root Locus (finding the location of closed-loop poles as gain changes)

Theorems for drawing Root Locus (but not in exhaustive detail, as in the book; what we covered in class only)

Root Locus concepts and their physical meaning: branches, asymptotes, real and imaginary axis intercepts, break-out/break-in points

Controlling the transient response

P-control (simplest, limited)

PD-control (stabilizes and speeds up)

I-control (terrible but it does fix steady-state error)

PI-control (fixes steady-state error at cost of slight slowdown)

PID-control (good compromise of all the above)

MIT OpenCourseWare http://ocw.mit.edu

2.04A Systems and Controls Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.