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Observing 2nd order system behavior

• Today we will
– change the flywheel output so it becomes a 2nd order system
– employ a feedback scheme such that we can “tune” the 2nd order 

system response from overdamped to undamped

• You need to know
– 1st order systems
– Laplace transforms

• We will cover (here and in Lecture 07)
– the basics of 2nd order system behavior

• You do not need to know yet
– how feedback systems work (we will cover in detail in the second 

part of the class)
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Flywheel: switching to angular position as output /1

• We modeled the flywheel as a SISO system with the torque r(t) as 
input and the angular velocity ω(t) as output. Schematically,

Time domain (ODE) Laplace domain (TF)

• Now let us consider instead the angular displacement θ(t) as the 

output. This is related to ω(t) via an integral:

• In the Laplace domain, the relationship becomes

• Using the TF for Ω(s) we obtain 
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Flywheel: switching to angular position as output /2

• Schematically,

Time domain (ODE) Laplace domain (TF)

• Some important observations: 
• the diagrams in this and the previous page correspond to the 
same physical system; however, the physical quantity that we 
choose to represent the output is different;

• the ODE for θ(t) can be obtained by inverse-Laplace 
transforming the TF Θ(s)/R(s) [recall that multiplying by s in the 
Laplace domain is equivalent to taking a derivative in the time 
domain] or by deriving the equation of motion in the time domain 
using Newton’s law for rotational systems. The results are of 
course consistent (check that!)  
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The transfer function

⇥(s) 1

=

R(s) s(Js+ b)

has two poles: one at �b/J (same as the 1

st
–order system we had considered

earlier, when angular velocity was the output) and one at the origin. The pole at

the origin results from the “integrator,” i.e. the integral operation that converts

angular velocity !(t) to angular position ✓(t).
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This is physically implemented by connecting the

ositive inlet of the amplifier and the output of the

σ
tive inlet and specifying a feedback gain K in the �b/J 0
t going into the details of the derivation (we will

llowing weeks) the transfer function of the system
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to observe experimentally that at “low gain,” i.e.

To make the flywheel respon

we can introduce feedback.

function generator to the p

position meter to the nega

computer interface. Withou

do that extensively in the fo

with feedback becomes

The purpose of the lab is

small values of K, the response is overdamped; whereas at “high gain,” i.e. for
large values of K, the response becomes underdamped.

�b/J 0

We will verify these observations with mathematical rigor in the following weeks.

For now, please consider K as a “knob” which you can turn to tune the response High gain (underdamp
from overdamped to underdamped. More details will come, we promise!

:open-loop poles
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Flywheel with feedback: a “tunable” 2nd order system
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Lab procedure

• First, please read carefully the previous three introductory pages, and make sure you are 
comfortable with the flywheel as a 2nd order system (now that we’ve defined the angular position 
as output) and the role of gain K in tuning the transfer function.

• Derive the roots of the polynomial Js2+bs+K=0 and verify that for small values of K they are both 
real, whereas for large values of K they form a “complex pair” (i.e. both have the same real part, 
and the imaginary parts have equal magnitude but opposite signs).

• With help from your TA, verify all the connections in your system, especially where the inputs and 
outputs are applied. Identify the definition of K in your digital interface. 

• Now use a step function as input to the flywheel, and try different values of K. Record at least two 
overdamped responses (for two low values of K) and two underdamped responses (for two high 
values of K) and the values of K for which you observed them. 

• For the underdamped responses, estimate the values of damping ratio ζ and damped oscillation 
frequency ωd (you will find definitions of these quantities in Lecture 07.)

• Hand in printouts of your results (or email in digital form) to the TA at the end of the lab.
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