Lecture 3 - 2003

Kollbruner Section 5.2 Characteristics of Thin Walled Sections and .. Kollbruner Section 5.3 Bending without Twist

thin walled => (cross section shape arbitrary and thickness can vary)
axial stresses and shear stress along center of wall govern
normal (to curved cross section) stress neglected
position determined by curvelinear coordinate s along center line of cross section
St. Venant torsion not a player as K ~ t^3

use shear flow:

a) equilibrium of wall element:

$$\tau = \tau_{XS} = \tau_{SX}$$

$$\left[\sigma + \left(\frac{d}{dx}\sigma\right) \cdot dx\right] \cdot t \cdot ds - \sigma \cdot t \cdot ds + \left(q + \frac{d}{ds}q \cdot ds\right) \cdot dx - q \cdot dx = 0$$

using $q = \tau \cdot t$ as it includes $\tau(s)$ and t(s)

$$\frac{\mathrm{d}}{\mathrm{d}s}\mathbf{q} + \left(\frac{\mathrm{d}}{\mathrm{d}x}\sigma\right) \cdot \mathbf{t} = 0$$

b) compatibility (shear strain)

$$\frac{d}{ds}u + \frac{d}{dx}v = \gamma$$

v is displacement in s direction u is displacement in x direction

view looking \bot to surface

c) tangential displacement (δv) in terms of η , ζ and ϕ

y component

z component

rotation component

v is displacement in s direction η is displacement in y direction ζ is displacement in z direction and ϕ is rotation all at point s on cross section.

 δ v is differential over distance dx $\delta\eta$ is component of δv in y $\delta\zeta$ is component of δv in z direction direction and hp* $\!\delta\varphi$ is component due to differential rotation between x and x+dx

superposition =>

$$dv = d\eta \cdot \cos(\alpha) + d\zeta \cdot \sin(\alpha) + h_p \cdot d\phi$$

 $\eta,\,\zeta$ and ϕ depend on s and x while α and hp are independent of x (prismatic section) rewrite as:

$$\frac{\delta v}{\delta x} = \frac{\delta \eta}{\delta x} \cdot \cos(\alpha) + \frac{\delta \zeta}{\delta x} \cdot \sin(\alpha) + h_p \cdot \frac{\delta \phi}{\delta x}$$

further assumptions:

- 1) preservation of cross section shape => $\zeta = \zeta(x)$; $\eta = \eta(x) \phi = \phi(x)$ 2) shear though finite is small $\sim 0 => \frac{d}{ds}u = -\left(\frac{d}{dx}v\right)$
- 3) Hooke's law holds => $\sigma = E \cdot \frac{\delta u}{\delta x}$ axial stress

equilibrium for the cross section:

$$\int \sigma dA = N_{X}$$

$$\int \sigma \cdot y dA = -M_{Z}$$

$$\int \sigma \cdot z dA = M_{Y}$$

$$\int \tau \cdot h_{p} dA = \int q \cdot h_{p} ds = T_{p}$$

$$\int \tau \cdot \cos(\alpha) dA = \int q \cdot \cos(\alpha) ds = V_{Y}$$

$$\int \tau \cdot \sin(\alpha) dA = \int q \cdot \sin(\alpha) ds = V_{Z}$$

Nx = axial force Mz and My are bending moments wrt y and z respectively note integral expressions Tp is torsional moment wrt cross sectional point P Qx and Qy shear forces

5.3 Bending without twist

$$\int \sigma \, dA = 0 \qquad \qquad \int q \cdot h_p \, ds = 0 \qquad \qquad \text{possible only if lateral loads pass through P}$$

$$\frac{\delta v}{\delta x} = \frac{\delta \eta}{\delta x} \cdot \cos(\alpha) + \frac{\delta \zeta}{\delta x} \cdot \sin(\alpha) + h_p \cdot \frac{\delta \phi}{\delta x} \text{ from above,}$$

using
$$\frac{d}{ds}u = -\left(\frac{d}{dx}v\right)$$
 with no twist => $\frac{\delta\phi}{\delta x} = 0$

becomes: $\frac{\delta u}{\delta s} = -\frac{d\eta}{dx} \cdot \cos(\alpha) - \frac{d\zeta}{dx} \cdot \sin(\alpha)$ which can be integrated to become:

$$u = -\eta' \cdot \int \cos(\alpha) \, ds - \zeta' \cdot \int \sin(\alpha) \, ds + u_0(x) \quad \text{where} \quad \frac{d\zeta}{dx} = \zeta' \text{ (prime is control F7)}$$

and $\frac{\delta\eta}{\delta x}$ is η' , and comes outside the integral due to our prismatic assumption

$$dY (=dy) = ds*cos(\alpha), dZ (=dz) = ds*sin(\alpha),$$

where Y and Z refer to a coordinate system with an arbitrary origin, whereas x and y are defined centroidal (refer to center of area) =>

$$u(x) = -\eta' \cdot \int 1 dY - \zeta' \cdot \int 1 dZ + u_0(x)$$

$$u = -\eta' \cdot Y - \zeta' \cdot Z + u_0(x)$$

which says longitudinal displacement u is distributed linearly across cross section (plane sections remain plane)

 \boldsymbol{u}_0 is the constant of integration which is $\boldsymbol{f}(\boldsymbol{x})$

axial strain = du/dx =>
$$u' = -\eta'' \cdot Y - -\zeta'' \cdot Z + u'_0(z)$$
 and

$$\sigma = E \cdot u' = -E \cdot \eta'' \cdot Y - \zeta'' \cdot Z + E \cdot u'_0(z)$$

now with
$$\int \sigma dA = 0$$

$$\int \sigma \, dA = \int E \cdot u' \, da = -\int E \cdot \eta'' \cdot Y \, dA - \int E \cdot \zeta'' \cdot Z \, dA + \int E \cdot u'_0(z) \, dA = 0$$

$$-E \cdot \eta'' \cdot \int Y dA - E \cdot \zeta'' \cdot \int Z dA + E \cdot u'_0(z) \cdot \int 1 dA = 0$$

$$\int Y dA \int Z dA$$
 rearranged becomes
$$\sigma = -E \cdot \eta'' \cdot Y - -E \cdot \zeta'' \cdot Z + E \cdot \eta'' \cdot \frac{1}{A} + E \cdot \zeta'' \cdot \frac{1}{A}$$

$$\sigma = -E \cdot \eta'' \cdot \left(Y - \frac{\int Y dA}{A} \right) - -E \cdot \zeta'' \cdot \left(Z - \frac{\int Z dA}{A} \right)$$
 but

$$\frac{\int Y \, dA}{A}$$
 is the definition of the y position of the centroid and $\frac{\int Z \, dA}{A}$ the z position =>

$$y = Y - \frac{\int \ Y \, dA}{A} \quad \text{and} \quad z = Z - \frac{\int \ Z \, dA}{A} \quad \text{and} \quad \sigma = -E \cdot \eta'' \cdot y - E \cdot \zeta'' \cdot z$$

where y and z are the position of the point s in the centroidal coordinate system.

 η " and ζ " are determined by the equilibrium conditions

$$\int \sigma \cdot y \, dA = -M_z \qquad \int \sigma \cdot z \, dA = M_y \qquad \sigma = -E \cdot \eta'' \cdot y - E \cdot \zeta'' \cdot z$$

$$\int \sigma \cdot y \, dA = \int \left(-E \cdot \eta'' \cdot y - E \cdot \zeta'' \cdot z \right) \cdot y \, dA = -E \cdot \eta'' \cdot \left(\int y \cdot y \, dA \right) \cdot -E \cdot \zeta'' \cdot \left(\int z \cdot y \, dA \right) = -M_Z$$

$$\int \sigma \cdot z \, dA = \int \left(-E \cdot \eta'' \cdot y - E \cdot \zeta'' \cdot z \right) \cdot z \, dA = -E \cdot \eta'' \int y \cdot z \, dA - E \cdot \zeta'' \int z \cdot z \, dA = M_y$$

noting that $\int z \cdot z \, dA = Iy$, $\int z \cdot y \, dA = Iyz$ and $\int y \cdot y \, dA = Iz$ and solving the two

equations for two unknowns $E \cdot \eta$ " and $E \cdot \zeta$ " leads to =>

Given

$$\begin{aligned} &-\mathrm{E}\eta^{"}\cdot\mathrm{I}_{Z}-\mathrm{E}\zeta^{"}\cdot\mathrm{I}_{yZ}=-\mathrm{M}_{Z}\\ &-\mathrm{E}\eta^{"}\cdot\mathrm{I}_{yZ}-\mathrm{E}\zeta^{"}\cdot\mathrm{I}_{y}=\mathrm{M}_{y} \end{aligned}$$

solving two equations two unknowns

$$\operatorname{Find}(\operatorname{E}\eta'',\operatorname{E}\zeta'') \rightarrow \left(\begin{array}{c} \frac{\operatorname{I}_{yz}\cdot\operatorname{M}_y + \operatorname{M}_z\cdot\operatorname{I}_y}{-\operatorname{I}_{yz}^2 + \operatorname{I}_y\cdot\operatorname{I}_z} \\ \\ \frac{-\operatorname{I}_{yz}\cdot\operatorname{M}_z - \operatorname{M}_y\cdot\operatorname{I}_z}{-\operatorname{I}_{yz}^2 + \operatorname{I}_y\cdot\operatorname{I}_z} \end{array} \right)$$

$$\mathrm{E} \eta'' \coloneqq \frac{\left(\mathrm{I}_{yz} \cdot \mathrm{M}_{y} + \mathrm{M}_{z} \cdot \mathrm{I}_{y}\right)}{\left(-\mathrm{I}_{yz}^{2} + \mathrm{I}_{y} \cdot \mathrm{I}_{z}\right)}$$

$$\mathrm{E}\eta'' \coloneqq \frac{\left(\mathrm{I}_{yz}\cdot\mathrm{M}_y + \mathrm{M}_z\cdot\mathrm{I}_y\right)}{\left(-\mathrm{I}_{yz}^2 + \mathrm{I}_y\cdot\mathrm{I}_z\right)} \qquad \qquad \mathrm{E}\zeta'' \coloneqq \frac{\left(-\mathrm{I}_{yz}\cdot\mathrm{M}_z - \mathrm{M}_y\cdot\mathrm{I}_z\right)}{\left(-\mathrm{I}_{yz}^2 + \frac{\mathrm{I}_y\cdot\mathrm{I}_z}{\mathrm{I}_z}\right)}$$

reversed signs

now substituting back into the relation for axial stress ($\sigma := -E \cdot \eta'' \cdot y - E \cdot \zeta'' \cdot z$) =>

$$\sigma := -E\eta" \cdot y - E\zeta" \cdot \mathbf{z}$$

$$\sigma \rightarrow \frac{-\left(I_{yz}\cdot M_y + M_z\cdot I_y\right)}{-I_{yz}^2 + I_y\cdot I_z} \cdot y - \frac{-I_{yz}\cdot M_z - M_y\cdot I_z}{-I_{yz}^2 + I_y\cdot I_z} \cdot z$$

$$\sigma \coloneqq \frac{\left(-I_y \cdot y + I_{yz} \cdot z\right) \cdot M_z + \left(I_z \cdot z - I_{yz} \cdot y\right) \cdot \underline{M_y}}{\left(-I_{yz}^2 + I_y \cdot I_z\right)}$$

as a check on this development let:

$$\begin{split} I_{yz} \coloneqq 0 \quad \text{and} \quad & \sigma \coloneqq \frac{-\left(I_{yz} \cdot M_y + M_z \cdot I_y\right)}{\left(-I_{yz}^{\quad \ 2} + I_y \cdot I_z\right)} \cdot y - \frac{\left(-I_{yz} \cdot M_z - M_y \cdot I_z\right)}{\left(-I_{yz}^{\quad \ 2} + I_y \cdot I_z\right)} \cdot \textbf{Z} \end{split}$$

$$\sigma \to \frac{^{-M}z}{^{I}_z} \cdot y + \frac{^{M}y}{^{I}_y} \cdot z \qquad \text{which matches our previous understanding on bending}$$

c) Shear Stress

integration of $\frac{d}{ds}q + \left(\frac{d}{dx}\sigma\right) \cdot t = 0$ (the equilibrium relationship above) along s leads to :

$$q(s,x) = q_1(x) - \int_0^s \left(\frac{d}{dx}\sigma\right) \cdot t \, ds$$
 where $q_1(x)$ is $f(x)$ and represents the shear flow at the start of the region. it is 0 at a stress free boundary which is convenient for an open section:

$$q_1(x) = 0$$

$$\frac{d}{dx}\sigma = \frac{d}{dx} \left[\frac{-\left(I_{yz} \cdot M_y + M_z \cdot I_y\right)}{\left(-I_{yz}^2 + I_y \cdot I_z\right)} \cdot y - \frac{\left(-I_{yz} \cdot M_z - M_y \cdot I_z\right)}{\left(-I_{yz}^2 + I_y \cdot I_z\right)} \cdot z \right]$$

$$\frac{d}{dx}M_z = V_y$$
 and $\frac{d}{dx}M_y = -V_z = 0$

$$\mathbf{M}_{\mathbf{Z}}(\mathbf{x}) \coloneqq \frac{\mathbf{V}_{\mathbf{y}} \! \cdot \! \mathbf{x}}{\mathbf{M}_{\mathbf{y}}(\mathbf{x}) \coloneqq -\mathbf{V}_{\mathbf{Z}} \! \cdot \! \mathbf{x}} \qquad \mathbf{I}_{\mathbf{y}\mathbf{Z}} \coloneqq \mathbf{I}_{\mathbf{y}\mathbf{Z}}$$

$$\frac{\mathrm{d}}{\mathrm{dx}} \left[\frac{-\left(\mathrm{I}_{yz} \cdot \mathrm{M}_{y}(\mathbf{x}) + \mathrm{M}_{z}(\mathbf{x}) \cdot \mathrm{I}_{y} \right)}{\left(-\mathrm{I}_{yz}^{2} + \mathrm{I}_{y} \cdot \mathrm{I}_{z} \right)} \cdot \mathbf{y} - \frac{\left(-\mathrm{I}_{yz} \cdot \mathrm{M}_{z}(\mathbf{x}) - \mathrm{M}_{y}(\mathbf{x}) \cdot \mathrm{I}_{z} \right)}{\left(-\mathrm{I}_{yz}^{2} + \mathrm{I}_{y} \cdot \mathrm{I}_{z} \right)} \cdot \mathbf{z} \right] \rightarrow \frac{\mathrm{I}_{yz} \cdot \mathrm{V}_{z} - \mathrm{V}_{y} \cdot \mathrm{I}_{y}}{-\mathrm{I}_{yz}^{2} + \mathrm{I}_{y} \cdot \mathrm{I}_{z}} \cdot \mathbf{y} - \frac{-\mathrm{I}_{yz} \cdot \mathrm{V}_{y} + \mathrm{V}_{z} \cdot \mathrm{I}_{z}}{-\mathrm{I}_{yz}^{2} + \mathrm{I}_{y} \cdot \mathrm{I}_{z}} \cdot \mathbf{z}$$

copy and substitute

$$q(s,x) = -\int_0^s \left(\frac{d}{dx}\sigma\right) \cdot t \, ds = -\int_0^s \left[\frac{\left(I_{yz} \cdot V_z - V_y \cdot I_y\right)}{\left(-I_{yz}^2 + I_y \cdot I_z\right)} \cdot y - \frac{\left(-I_{yz} \cdot V_y + V_z \cdot I_z\right)}{\left(-I_{yz}^2 + I_y \cdot I_z\right)} \cdot z\right] \cdot t \, ds$$

$$q(s,x) = \frac{-1}{-I_{vz}^2 + I_v \cdot I_z} \cdot \left[\left(I_{yz} \cdot V_z - V_y \cdot I_y \right) \cdot \int_0^s y \cdot t \, ds - \left(-I_{yz} \cdot V_y + V_z \cdot I_z \right) \cdot \int_0^s z \cdot t \, ds \right]$$

if we designate the integrals which are the static moments of the cross section area: Qy and Qz:

$$Q_z = \int_0^s y \cdot t \, ds$$

$$Q_y = \int_0^s z \cdot t \, ds$$

$$q(s, x) := \frac{-1}{-I_{vz}^2 + I_v \cdot I_z} \cdot \left[\left(I_{yz} \cdot V_z - V_y \cdot I_y \right) \cdot Q_z - \left(-I_{yz} \cdot V_y + V_z \cdot I_z \right) \cdot \frac{Q_y}{y} \right]$$

or rearranging as we did for axial stress

$$q(s,x) \text{ collect}, V_y, V_z \rightarrow \frac{-1}{-I_{yz}^2 + I_y \cdot I_z} \cdot \left(-I_y \cdot Q_z + I_{yz} \cdot Q_y\right) \cdot V_y - \frac{1}{-I_{yz}^2 + I_y \cdot I_z} \cdot \left(I_{yz} \cdot Q_z - I_z \cdot Q_y\right) \cdot V_z$$

$$q(s,x) := \frac{-1}{\left(-I_{yz}^2 + I_{y} \cdot I_{z}\right)} \cdot \left[\left(I_{yz} \cdot Q_z - I_z \cdot Q_y\right) \cdot V_z + \left(-I_y \cdot Q_z + I_{yz} \cdot Q_y\right) \cdot V_y\right]$$

or if the axes are principal (Ixy = 0)

$$I_{yz} := 0$$

$$q(s,x) := \frac{-1}{\left(-I_{\boldsymbol{VZ}}^{} + I_{\boldsymbol{V}} \cdot I_{\boldsymbol{Z}}\right)} \cdot \left[\left(I_{\boldsymbol{yZ}} \cdot \boldsymbol{Q}_{\boldsymbol{Z}} - I_{\boldsymbol{Z}} \cdot \boldsymbol{Q}_{\boldsymbol{y}}\right) \cdot \boldsymbol{V}_{\boldsymbol{Z}} + \left(-I_{\boldsymbol{y}} \cdot \boldsymbol{Q}_{\boldsymbol{Z}} + I_{\boldsymbol{yZ}} \cdot \boldsymbol{Q}_{\boldsymbol{y}}\right) \cdot \boldsymbol{V}_{\boldsymbol{y}} \right]$$

$$q(s,x) := \left(\frac{Q_y \cdot V_z}{I_v} + \frac{Q_z \cdot V_y}{I_z}\right) \qquad I_{yz} := 0$$

Þ

d) Shear Center

the above relationships apply for bending without twist i.e. when

$$\int \sigma \, dA = 0 \qquad \qquad \int q \cdot h_p \, ds = 0 \qquad \qquad \text{possible only if lateral loads pass through P}$$

$$\mathbf{q} \rightarrow \frac{-1}{-\mathbf{I_{zv}}^2 + \mathbf{I_{v}} \cdot \mathbf{I_{z}}} \cdot \left[\left(\mathbf{I_{zy}} \cdot \mathbf{Q_z} - \mathbf{I_{z}} \cdot \mathbf{Q_y} \right) \cdot \mathbf{V_z} + \left(-\mathbf{I_{y}} \cdot \mathbf{Q_z} + \mathbf{I_{zy}} \cdot \mathbf{Q_y} \right) \cdot \mathbf{V_y} \right]$$
 from above (reset in hidden area

this point P was designated (by Maillart in 1921, see page 106 Kollbrunner) as the shear center. In the centroidal coordinate system, this is located at y_D and z_D . the second condition applies for a shear force V. The center of action must pass through P. Divide Q into components Vy and Vz

thus from (Qy), the moment the moment equilibrium wrt C (in centroidal coordinates) is:

$$\int q(V_y) \cdot h_c ds + V_y \cdot z_D = 0$$

$$\int q(V_y) \cdot h_c ds = -V_y \cdot z_D$$

 $q(V_y)$ is q with Vz set to 0 and hc is perpendicular distance from centroid to line of action (i.e. y(s) and z(s)).

set $V_z := 0$ rese

$$q := \frac{-1}{\left(-I_{\mathbf{VZ}}^2 + I_{\mathbf{V}} \cdot I_{\mathbf{Z}}\right)} \cdot \left[\left(I_{\mathbf{YZ}} \cdot Q_{\mathbf{Z}} - I_{\mathbf{Z}} \cdot Q_{\mathbf{y}}\right) \cdot V_{\mathbf{Z}} + \left(-I_{\mathbf{y}} \cdot Q_{\mathbf{Z}} + I_{\mathbf{YZ}} \cdot Q_{\mathbf{y}}\right) \cdot V_{\mathbf{y}}\right]$$

Ζ

$$q \to \frac{-1}{-I_{zy}^2 + I_y \cdot I_z} \cdot \left(-I_y \cdot Q_z + I_{zy} \cdot Q_y\right) \cdot V_y$$

substitute

$$\int q(V_y) \cdot h_c ds = -V_y \cdot z_D = \int \frac{-1}{\left(-I_{zy}^2 + I_y \cdot I_z\right)} \cdot \left(-I_y \cdot Q_z + I_{zy} \cdot Q_y\right) \cdot V_y \cdot h_c ds$$

$$-V_{y} \cdot z_{D} = \frac{-V_{y}}{\left(-I_{zy}^{2} + I_{y} \cdot I_{z}\right)} \left[\int \left(-I_{y} \cdot Q_{z} + I_{zy} \cdot Q_{y}\right) \cdot h_{c} \, ds \right]$$

or ...

$$z_{\mathbf{D}} = \frac{1}{\left(-I_{\mathbf{z}y}^{2} + I_{\mathbf{y}} \cdot I_{\mathbf{z}}\right)} \cdot \left[\int \left(-I_{\mathbf{y}} \cdot Q_{\mathbf{z}} + I_{\mathbf{z}y} \cdot Q_{\mathbf{y}}\right) \cdot h_{\mathbf{c}} \, d\mathbf{s} \right] = \frac{-I_{\mathbf{y}} \cdot \int Q_{\mathbf{z}} \cdot h_{\mathbf{c}} \, d\mathbf{s} + I_{\mathbf{z}y} \cdot \int Q_{\mathbf{y}} \cdot h_{\mathbf{c}} \, d\mathbf{s}}{-I_{\mathbf{z}y}^{2} + I_{\mathbf{y}} \cdot I_{\mathbf{z}}}$$

moment from V.z

$$\int q(V_z) \cdot h_c \, ds - V_z \cdot y_D = 0 \qquad \int q(V_z) \cdot h_c \, ds = V_z \cdot y_D$$

 $q(v_z)$ is q with Vy set to 0 and hc is perpendicular distance from centroid to line of action

$$\mathbf{V}_{\mathbf{Z}} \coloneqq \mathbf{V}_{\mathbf{Z}} \qquad \text{set} \qquad \mathbf{V}_{\mathbf{y}} \coloneqq \mathbf{0} \quad \mathbf{q} \coloneqq \frac{-1}{\left(-\mathbf{I}_{\mathbf{y}\mathbf{Z}}^{2} + \mathbf{I}_{\mathbf{y}} \cdot \mathbf{I}_{\mathbf{Z}}\right)} \cdot \left[\left(\mathbf{I}_{\mathbf{y}\mathbf{Z}} \cdot \mathbf{Q}_{\mathbf{Z}} - \mathbf{I}_{\mathbf{Z}} \cdot \mathbf{Q}_{\mathbf{y}}\right) \cdot \mathbf{V}_{\mathbf{Z}} + \left(-\mathbf{I}_{\mathbf{y}} \cdot \mathbf{Q}_{\mathbf{Z}} + \mathbf{I}_{\mathbf{y}\mathbf{Z}} \cdot \mathbf{Q}_{\mathbf{y}}\right) \cdot \mathbf{V}_{\mathbf{y}}\right]$$

$$\mathbf{q} \rightarrow \frac{-1}{-\mathbf{I_{ZV}}^2 + \mathbf{I_{V}} \cdot \mathbf{I_{Z}}} \cdot \left(\mathbf{I_{Zy}} \cdot \mathbf{Q_{Z}} - \mathbf{I_{Z}} \cdot \mathbf{Q_{y}} \right) \cdot \mathbf{V_{Z}}$$
 substitut

$$\int q(V_z) \cdot h_c ds = V_z \cdot y_D = \int \frac{-1}{\left(-I_{zy}^2 + I_y \cdot I_z\right)} \cdot \left(I_{zy} \cdot Q_z - I_z \cdot Q_y\right) \cdot V_z \cdot h_c ds$$

$$V_z \cdot y_D = \int \frac{-1}{\left(-I_{zy}^2 + I_y \cdot I_z\right)} \cdot \left(I_{zy} \cdot Q_z - I_z \cdot Q_y\right) \cdot V_z \cdot h_c \, ds = \frac{-V_z}{\left(-I_{zy}^2 + I_y \cdot I_z\right)} \cdot \left(I_{zy} \cdot \int Q_z \cdot h_c \, ds - I_z \cdot \int Q_y \cdot h_c \, ds\right)$$

$$y_{D} = \frac{-1}{\left(-I_{zy}^{2} + I_{y} \cdot I_{z}\right)} \cdot \left(I_{zy} \cdot \int Q_{z} \cdot h_{c} \, ds - I_{z} \cdot \int Q_{y} \cdot h_{c} \, ds\right)$$

for principal axes (lyz = 0):

$$\mathbf{y}_{\mathbf{D}} \coloneqq \frac{-1}{\left(-\mathbf{I}_{\mathbf{Z}\mathbf{y}}^{2} + \mathbf{I}_{\mathbf{y}} \cdot \mathbf{I}_{\mathbf{Z}}\right)} \cdot \left(\mathbf{I}_{\mathbf{Z}\mathbf{y}} \cdot \int \mathbf{Q}_{\mathbf{z}} \cdot \mathbf{h}_{\mathbf{c}} \, d\mathbf{s} - \mathbf{I}_{\mathbf{z}} \cdot \int \mathbf{Q}_{\mathbf{y}} \cdot \mathbf{h}_{\mathbf{c}} \, d\mathbf{s}\right) \qquad \mathbf{z}_{\mathbf{D}} \coloneqq \frac{-\mathbf{I}_{\mathbf{y}} \cdot \int \mathbf{Q}_{\mathbf{z}} \cdot \mathbf{h}_{\mathbf{c}} \, d\mathbf{s} + \mathbf{I}_{\mathbf{z}\mathbf{y}} \cdot \int \mathbf{Q}_{\mathbf{y}} \cdot \mathbf{h}_{\mathbf{c}} \, d\mathbf{s}}{-\mathbf{I}_{\mathbf{z}\mathbf{y}}^{2} + \mathbf{I}_{\mathbf{y}} \cdot \mathbf{I}_{\mathbf{z}}^{2}}$$

$$z_{D} := \frac{-I_{y} \cdot \int Q_{z} \cdot h_{c} ds + I_{zy} \cdot \int Q_{y} \cdot h_{c} ds}{-I_{zy}^{2} + I_{y} \cdot I_{z}^{2}}$$

$$y_{D} = \frac{\int Q_{y} \cdot h_{e} \, ds}{I_{y}}$$

$$z_{D} = \frac{-\int Q_{z} \cdot h_{c} ds}{I_{z}}$$