Lecture 4 - 2003
Pure Twist

pure twist around center of rotation D => neither axial (c) nor bending forces (Mx, My) act on
section; as previously, D is fixed, but (for now) arbitrary point.

as before:
a) equilibrium of wall element: iq + d—c\-t =0
s \dx )
b) compatibility (shear strain) dusdy= y=0 small deflections
ds dx

c) tangential displacement (év) in terms of n, £ and ¢ (geometry)

5 . 8¢
o 5 coslar) + g'sm(“) Ty, N.B. h, =>h;, from definition of problem

v _ o

further assumptions:
1) preservation of cross section shape => ¢ = {(x); n = n(x) ¢ = ¢(x)

2) shear though finite is small ~0 => iu = d—v
ds dx )
3) Hooke's law holds => ¢ = E? axial stress
X
from equilibrium pure twist
) cdA =N t-hpdA=J q~h.pds=Tp cdA=N, =0

~

cydA=-Mz t-cos(a) dA = J q~cos(oc) ds=V

y cydA=-M,=0

~

G'ZdA=My T'Sil’l(a)dA=J' q-Sil’l((X)ds=V czdA=M_=0

z y

pure twist also => only ¢ is finite i.e. other displacements (and derivatives) {=n =0 =>

o _ S_H.COS(OL) + B—Q-sin(a) + h'p@ becomes L hD'@
ox  Ox ox ox

using negligible shear assumption iu = d—v\ => d—u = —hD-@ and integration along s =>
ds dx ) ds 5x
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u= _%J( hpy ds + up(x)

previously u=-n"Y - {-Z + uy(x) which showed u linear with y and z => plane sections plane.

)

here - only if hD is constant so it can come outside hy, J 1ds - isu (longitudinal

)

displacement) linear. u is defined as warping displacement (function).

stress analysis can be made analogous for torsion and bending IF the integrand hy,-ds thought to

be a coordinate. calculation of stresses will involve statical moments, moments of inertia and
products of inertia which will be designated "sectorial" new coordinate = Q
Q wrt arbitrary origin and » wrt normalized sectorial coordinate (as before like wrt center of area)

dQ = hvds = do  the warping function then becomes:
D 3¢ |

u= —6—-9 + up(x) = —0"Q + ug(x)
X

b) warping stresses

as before: axial strain = du/dx => u' = —¢"-Q + u'((x) and

6 = Eu'=-E¢"Q + E-u'((x)

J' cdA =0 determines u'(x) Jf (_E.¢".Q + E-u‘o(x)) dA=0 =>
QdA QdA
and stress becomes:
E-u'o(x) = E-¢' ——— 6=-E¢"Q+E¢-—— =-E"o
A A
J QdA | J QdA
thatis: o = -E-¢"-| Q - =-E¢"®  where 0=Q - ——
A ) A

this defines the normalized coordinate in the same sense asy and Y etc.

as an aside: u'= - u=—¢"o + constant do = hpy-ds

=>

in this sense, o is defined as the unit warping function
displacement per unit change in rotation
dependent only on s within a constant
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d )

shear flow follows from integration of iq + (—c)-t = 0 along s as above and leads to :
ds dx

—q= —(—c -t => q(s,x) = —[ d—c-t ds + q1(x)
J dx

using the expression for axial stress o = E-u' = -E-¢"-®

[‘S \ s s \
q(s,x) = qq(x) — d—c ‘tds = qi(x) - J -E-¢"-0-tds = qi(x) + E-¢" J o-tds
0
where q;(x) is f(z) and represents the shear flow at the start of the region. itis O at a stress free

boundary which is convenient for an open section: q(x) =0

as before if we designate the integrals which are the static moments of the cross section
area: e.g. Qy and Qz:

® = "sectorial statical moment of the cut-off portion of the cross section”
Qp = odA = o-tds
0
therefore: q(s,x) = E-¢"-Q,,
designate torsional moment wrt D by Tw J( T-hpdA = J( qhpds =T,

now, since dQ = hpy-ds = do=> J( qhpds = J' qde and using integration by parts

parts: u=gq Vo

J udv = (u-v)(b) — (uv)(0) — 4[ vdu
du=dq dv=do

integration along s and as dq = 59/6s*ds

J qdw=q-w(s=b)—q-w(s=0)—J wdq= q~w(s=b)q~w(s=0)J[ w-?ds
s

go(s=b)=0 and go(s=0)=0 asq(s=b)andq(s=0)= 0 (stress free ends)

now using equilibrium: iq + d—c\t =0
s \dx )
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- [ e [ d
J qdo =0- J 5 ds = J O"d_xc't ds substituting o = —E-¢"-o from above Lo = —E.¢".¢ =>
dx

J qdo = ( co'd—c5~t ds = —E-¢"‘~J o-o-tds = -E-¢" 1,

de

where _ _ _ _ B . "
similar to Iz lpo = | @0dA=] ootds I,=| yydA=| yytds N.B.sometimes this
is represented by lyy

going back to the relationship for torsional moment, where we have derived relationships forJ’ qhpds

=>
_T(D
T, = qhpds = qdo = -E-¢"-I, therefore: ¢" = o
0w
To
if we think of a distributed mo
torsional load (moment/unit
length) mp;
equilibrium over element dz =>
Tow + dTw/dx’dx
T PO DS € IV P
—w+mD~x+ w+d—X(D)'X = w——mD

and just as M'|, = V, the warping moment M' ;' may be defined as M' /=T |

y
-M
thus: ¢" = and the stresses are as follows:
'Icooo
M, —Te
c=-E¢"0o=—o0 and ... from q(s,x) = E-¢"-Q, q(s,x) = Tt = ——Q,
(O] I(D(D
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c) Center of twist

calculation of the sectorial quantities assumes center of twist y; and zp are known. the
second and third equilibrium conditions above require:

J' cydA=0 J' c-zdA=0 for pure twist

using ¢ = —E-¢"- this requires ,[ oydA =0 and J ozdA=0as E=0and ¢"# 0

now for some geometry: determine distance from tangent to wall from hp in terms of the coordinates of the
center, the angle (o) that the y axis would have to rotate to line up with the positive direction of the tangent and
the perpendicular distance from the origin of the centroidal coordinates h.

hp=hc--a-b
tangent y
™ _ o
h a= yDocos(B) b= ZD'SIH(B)
N C
hD b1 TE\ .
D R g B=a- E cos(B) = cos(a - E} = sm(a)
p
yDB & sin(B) = sin(a - E\ = —cos(at)
b &
[3 a
Z0 C
Z parallel to
tangent

hp=hc--a-b=h-- yD~cos(B) - zD~sin(B) =hc - yD-sin(a) + zD-cos(a)

multiply by ds and apply geometry: o ym
hp-ds = h-ds - yD‘sin(oc)'ds + ZD-cos(a)-ds ds dy
ds'cos(B) =dz= ds~sin(a) dz
ds'sin(B) =—dy= ds-(—cos(a)) dy = ds-cos(a) Z,C
hD‘ds = hc‘ds - yD‘sin(oc)'ds + ZD-cos(a)-ds = hC-ds - yD~dz + ZD-dy
sectorial coordinate o = hds => hpy-ds = dop = he-ds — ypydz + zpy-dy = doc - ypdz + zpydy
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which is now integrated: op = oc - ypz+zpy

and introduced into the equilibrium equations above where wis oy :

J o-ydA =0 and J w-zdA=0 =>
J( opydA=0= J( (‘”C -ypz+ ZD-y)-y dA and .... J( opzdA=0= J( (‘”C —ypz+ ZD-y>-sz

now using second moment nomenclature (including treating » as a coordinate) =>

(

J coc~ydA—yDJ y-zdA + ZD-J y-ydA=0 becomes

Loe = YD Iyz —zpyl, =0 recall that Iyo)C is referred to C for

J( oc-zdA - yDJ zzdA + ZD-J y-zdA=0 becomes Loe~ YD'ly + 2ply, = 0

which provides two equations in two unknowns ypyand zp,

Given

oy 1 = Y 1 = YD\
Iy(OC yD ly + ZD IyZ 0 IZCDC yD lyZ + ZD IZ 0 — Fll’ld(yD,ZD>
ZD)
| O I N |
yOC 'z yZ ZoX i S S S |
Yp ™ L2 and ... zp - zoe y yzzywc
y'z " lyz L, =1y,
(1 € -1,1 ) (—1 T+ 1,1 )
H H = L L y(DC Z yZ Z0C L ZMOC y yZ y(J)C
and for principal axes Iy, 0 Ly, =0 yp = > zp = 5
(Iy'lz ~lyz ) (IY'IZ ~lyz )
Iy _Izwc
YD 7 and ... D7
y Z
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