Shear Stress from Shear Load in closed non symmetric section
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Shear load is applied such that (pure) bending occurs
can't use symmetry to determine where to start s = 0 arc length parameter

approach: divide into two problems and superpose:
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q* is the shear flow we have developed to date opening the section and
g1 is a constant shear flow in the closed section

superposition => we add the two flows for the actual shear flow
how do we calculate each. i.e q=qg* +q1

We have one condition; the net has to match the applied load

the second comes from the physical situation; the slip at the cut must be 0
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slip = J y ds where integral is circular and y is the shear strain

( q_star qi _
Tds+J Tds—O qi

b
_J’ q_star(s) ds

is constant =>

G the shear modulus = constant =>

t(s)
0 where the numerator is the integral around the cross
q = section and the denominator is as well (circular)
1
[N
J t(s)
b b in this case the example is
q_star(s) := —-m_star(s) and ( g star(s) ds = Q [ m_star(s) ds  symmetric wrt z axis lyz = 0 would
t(s) I J t(s) need to account for assymmetry
0 0 as above if necessary
b )
m_star(s)
t(s)
q(s) = % m_star(s) —
1
—ds
]

let's do an example
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Example of closed rectangular cross section non-symmetric
subject to shear force
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right side

my side(®) = [g'tdb + ts~(g~s - gb- ész + sb— ébz):l'[ [b<s<(b+ g+ h)]] [b<s<(b+ g+ h)]

1 1
Mypoh = gtgb+ ts'|:g~(b +g+h)—-gb- E-(b + g+ h)2 +(b+ g+ h)b- ;bz}

bottom
My potiom(s) = [ Mypgh — Ity (s =b—g—hJ[b+g+h<s<(2b+g+h)

[b+g+h<s<(2b+ g+ h)]

left side same for as right side with s starting at 2*b +dd, with initial value my(2*b + dd)

s
my(s) = J y-tds

0
2-b+dd ] s

my(s) = J y-tds + J y-tds = my(2~b +dd) + t4 J —h+ [s— (2:b+ dd)] ds
0 2-b+dd 2-b+dd

using Il for 2*b + dd [2b+ dd <s<(2:b+ 2dd)]

S
J -h+ (6 - 1) do—>

11

my(2b+ dd) = (2:b + dd) (2b+dd) =0

My pottom My Hottom

I1:=2b+dd

1 2 1.2
myileftiside(s) = [mybottom(Zb + dd) + ts~(—4~s + ;s — 1ls+ 411 + E-ll \}[ [2b+ dd <s < (2:b+ 2dd)] ]

y
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s:=0,01.b+dd+b+dd
my(s) = myitop(s) + myfside(s) + myibottom(s) + myileftiside(s)

need also t(s)
t_top(s) ==ty (0 <s<b) t_side(s) := te[b<s<(b+ g+ h)]

t_bottom(s) ==t (b+ g+ h<s<2b+ g+ h) t_left_side(s) := tjg[2:b+ dd <s <(2:b + 2dd)]

t(s) := t_top(s) + t_side(s) + t _bottom(s) + t left side(s)

Q= 100 OO em
S) == T(S) =
d I I-t(s)
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plot of stress distribution around cross section for q_star
magnitudes shown positive is out of section

this is shear stress
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2-b+2-dd
m_star(s) := my(s) m_star(s) d
— S
t(s)
_ 0
ar (2~b+2~dd A
1
—ds
| ((s)
0
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Q q(s)
S) := —-(m_star(s) — T(8) = —
q(s) = ~(m_star(s) - ) =19
10 10
s _
qs) 0 7] (s)  oF _
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s S
plot of stress distribution around cross section =10 =15
magnitudes shown positive outward
this is shear stress
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stress superposed on geometry

now that we have considered on such cross section, what if there are one or more adjacent?
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