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Solution of Plate Bending Equation

Uniform Load Simply Supported Free to pull in


via sinusoidal loading


(loading p x, y) := po⋅sinπ⋅ 
y ⋅sinπ⋅ 

x  
 a   b  

pxy 

= = =w 0  mx = my = 0 for x 0  y = 0 x b  y = a 

= = mx = my = 0 => d

d

x

2

2w = 
d

d

y

2

2w = 0 x 0 y = 0 x b  y = a 
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x y 

D 

all boundary conditions satisfied if take w x, y) := C⋅sinπ⋅ 
y ⋅sinπ⋅ 

x ( 
 a   b  

substitute in plate equation: 

d4 d2 d2 d4 po⋅sinπ⋅ 
y ⋅sinπ⋅ 

x  
 a   b  

4w(x,y) + 2⋅ 2 2w(x,y) + 4w(x,y) = 
Ddx dx dy dy 

d4

4w x, y) + 2⋅ d2

2 
d2

2w x, y) + d4

4w x, y) → 4 C⋅sin(π⋅y)⋅sin(π⋅x)⋅π4
( ( ( ⋅ 

dx dx dy dy 

after collecting terms: 

( (d4

4w x, y) + 2⋅ d2

2 
d2

2w x, y) + d4

4w x, y) = C⋅sinπ⋅ 
y ⋅sinπ⋅ 

x ⋅
 π

4 
+ 2⋅

π
4 

+
π

4  

dx
( 

dx dy dy  a   b  
 

b4 a2
⋅b2 a4 

 

2
 

= C⋅sinπ⋅ 
y ⋅sinπ⋅ 

x ⋅ π
2 
+
π

2  

 a   b  
 

b2 a2 
 

is a solution if 2 po⋅sinπ⋅ 
y ⋅sinπ⋅ 

x  

C⋅π
4
⋅sinπ⋅ 

y ⋅sinπ⋅ 
x ⋅ 1 

+ 
1  =  a   b  

 a   b  
 

b2 a2 
 

D 

is a solution if 

2 po 1 
C⋅π

4
⋅




 

b

1
2 
+ 

a

1
2 


 = 
p

D
o or .... C = 

D⋅π
4 
⋅




 

b

1
2 
+ 

a

1
2 



2 

w x, y) := 
po 

⋅ 
1 

⋅sinπ⋅ 
y ⋅sinπ⋅ 

x  is the displacement for a sinusoidal loading in x and y
(

D⋅π
4 
 1 1 

2  a   b  moments and stresses are determined from: 

 + 
2

 b
2 a  
  d2  d2   d2 d2  

mx := −D⋅ 2w(x,y) + ν 2w(x,y)  my := −D⋅ 2w(x,y) + ν 2w(x,y) 
 dx  dy   dy dx  
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n
n 

t

t t
zmax

mx t3 mx t 6and σ x := 
I 
⋅zmax I := σ x := 

I 
⋅ 
2 

σ x := mx⋅ 12 2t 

this result can first be generalized to: for a loading of a higher order sinusoidal loading 

(w x, y) := 
po 

⋅ 
1 

⋅sinmπ⋅ 
y ⋅sinnπ⋅ 

x  
(D⋅π

4 
 2 2 

2  a   b  p x, y) := po⋅sinmπ⋅ 
y ⋅sinnπ⋅ 

x  
 n 

+ 
m  a   b  

 2
 b

2 a  
now consider a uniform load: po ∞ ∞ 
represent po in a double fourier series: p f(x, y) = ∑ ∑ amn⋅sin 

m⋅π⋅y ⋅sin 
n⋅π⋅x = 

 a   b  
m = 1 n = 1 

16⋅po odd coefficientscoefficients amn can be determined and are: amn = 
π

2
⋅m⋅n 

even = 0 

for example on a square plate with infinity = 20 i.e. 20 terms in the series: N 20 M ≡ 20≡

 a   b  
amn sin ⋅ sin⋅

each sinusoidal element (m,n) is: pxy 

note here that we are using m, 
and n odd 
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D

n

amn 

n
n 

n 

the displacement for each loading element 

(w x, y) := 
1 

⋅ 
amn 

⋅sin 
m⋅π⋅y ⋅sin 

n⋅π⋅x  

is ... D⋅π
4 
 n2 m2 

2  a   b  
 +
 2
 b

2 a  

from above 

this result can first be generalized to: for a loading of a higher order sinusoidal loading 

(w x, y) := 
po 

⋅ 
1 

⋅sinmπ⋅ 
y ⋅sinnπ⋅ 

x  
(D⋅π

4	
 2 2 

2  a   b  p x, y) := po⋅sinmπ⋅ 
y ⋅sinnπ⋅ 

x  
 n 

+ 
m  a   b  

 2
 b

2 a  

so by superposition of lots of the components of the fourier expansion of po is ... 

(
1 

∞ ∞ amn 
⋅sin 

m⋅π⋅y ⋅sin 
n⋅π⋅x  16⋅pow x, y) := ⋅ ∑ ∑ 

π
4
⋅D m = 1 n = 1  m2 n2 

2  a   b  amn := 

π
2
⋅m⋅n +

 2
 a b2 

 
substituting for amn 

∞ ∞ 

(w x, y) := ∑ ∑ 
16⋅po 

⋅sinm⋅π⋅ 
y ⋅sinn⋅π⋅ 

x  
2  a   b  

m = 1 n = 1 
π

6
⋅D⋅m⋅n⋅

 m2 
+ 

n2  

 2
 a b2 

 

m, n, odd => substitute 2*m-1 and 2*n-1 for m, n 

∞ ∞ 

(w x, y) := ∑ ∑ 
16⋅po 

⋅sin(2⋅m − 1)⋅π⋅ 
y⋅sin(2⋅n − 1)⋅π⋅ 

x 
 

2  a   b 
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∑∑

x y 

D

2  a   b 
m = 1 n = 1 ⋅ ⋅

⋅ ⋅π
6
⋅D⋅(2 m  − 1)⋅(2 n  − 1)⋅

 (2 m  − 1)2 
+ 

(2 n  − 1)2  
 2  
 a b2 

 
if we want to look at maximum deflection: x = b/2 y = a/2 expand here 

from previous lecture: 

  d2  d2   d2 d2  
mx := −D⋅ 2w(x,y) + ν 2w(x,y)  my := −D⋅ 2w(x,y) + ν 2w(x,y) 

 dx  dy   dy dx  
and we can solve just as above for the single half waves: 

plot as a function of a/b i.e. a with b = 1 

a := 1 .. 10 b := 1 ν := 0.3 

M := 10 N := 10 

M N 
⋅

( )  := ∑ ∑ 
16 

⋅
 

(2 n  − 1)2 
+ ν⋅ 

(2 m  − 1)2 
⋅( )(m mx_po_b_sq a ⋅ −1

m = 1 n = 1 ⋅
⋅ ⋅ ⋅π

4
⋅(2 m  − 1)⋅(2 n  − 1)⋅

 (2 m  − 1)2 
+ (2 n  − 1)2


2 


  

a 
2 




 2   b  
  

a   
  b   

0.1 
( )  mx_po_b_sq(10) = 0.125mx_po_b_sq a 

0.05 
what length (ratio) is 
needed to declare a plate

0
0 5 10 long??? 

a 

see how many terms we need to obtain convergence: 

M N 
⋅ 

, ⋅mx_po_b_sq(a M  , N) := ∑ ∑ 
16 

⋅
 

(2 n  − 1)2 
+ ν⋅ 

(2 m  − 1)2 
⋅( 

m = 1 n = 1 ⋅
⋅ ⋅ ⋅π

4
⋅(2 m  − 1)⋅(2 n  − 1)⋅


 (2 m  − 1)2 

+ (2 n  − 1)2


2 


  

a 
2 




 2   b  
  

a   
  b   
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M := 1 .. 10 

0.2 

mx_po_b_sq(10 , M , M) 0.15 

0.1 
0 5 10

M 

the corresponding y direction moment is: ν is associated with the m term vs. the n term see above my) 

M := 10 N := 10 b := 1 a := 1 .. 10 ν := 0.3 max at a/2 b/2 

M N 
⋅

( )  := ∑ ∑ 
16 

⋅

ν⋅(2 n  − 1)2 + 

(2 m  − 1)2 


⋅(−my_po_b_sq a ⋅ 

m = 1 n = 1 ⋅
⋅ ⋅ ⋅π

4
⋅(2 m  − 1)⋅(2 n  − 1)⋅

 (2 m  − 1)2 
+ (2 n  − 1)2


2 


  

a 
2 




 2   b  
  

a   
  b   

0.05 

0.045 
( )my_po_b_sq a

0.04 

0.035 
0 5 10

a 

restating original form of mx/po*b^2 

M N 
16 

my_po_b_sq(10) = 0.037 

mx_po_b_sq(10 , 10 , 10)⋅ν = 0.037 

⋅
( )  := ∑ ∑ ⋅

 
(2 n  − 1)2 

+ ν⋅ 
(2 m  − 1)2 

⋅( )(m mx_po_b_sq a ⋅ −1

m = 1 n = 1 ⋅
⋅ ⋅ ⋅  b π

4
⋅(2 m  − 1)⋅(2 n  − 1)⋅


 (2 m  − 1)2 

+ (2 n  − 1)2


2 


  

a 
2 




 2  
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b

t

t t
zmax

    2  
  

a   
  b   

part of figure 9.5 in Hughes
( )  0.1mx_po_b_sq a 

( )my_po_b_sq a 
0.05 

0 
0 5 10

a 

stress is related to the moment as before 

mx t3 mx t 6
σ x := 

I 
⋅zmax I := σ x := 

I 
⋅ 
2 

σ x := mx⋅ 12 2t 

at maximum mid point: considering: 
6 

mx⋅ 
2 σ x t2 

σ x = k po⋅
 

b 
 2 

= k k = 
 2 

= 6 mx_po_b_sq⋅
⋅ 

 t  po⋅
 

b   po⋅
 

b   
  t     t   

therefore: kx a ( )  similarly ky a ( )( )  := 6⋅mx_po_b_sq a ( )  := 6⋅my_po_b_sq a

1 kx(10) = 0.748 

kx a( )  

( )  
0.5 ky(10) = 0.221

ky a 

0 kx 10( )⋅ν = 0.224 
0 5 10 

a 

the clamped situation is considerably more complicated 
the results are developed in Timoshenko 
results are shown in the plot: 

0.1 0.5 

Mx_clamped 0.08 kx_clamped 
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1 1.5 2 2.5 
0.3 

0.4
ky_clamped 

0.343 
1 1.5 2 2.5 

a_over_b a_over_b 

0.04 

0.06 
My_clamped 

N.B. this NOT the same My and ky as for the simply supported case.

In the clamped case, there is an axial stress in the y (long direction) even for a long plate.

The y axis stress is the maximum at the midpoint of the short side (x = b/2 at the edge y = 0 and y = a)

the x axis stress is maximum at the midpoint of the long side (y = a/2 at the edge x = 0 and x = b)
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the bottom line plot for simply supported and clamped/clamped plates under uniform pressure is 

figure 9.6 Hughes
0.8 

0.7 
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0.5 
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k 
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tio
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st
re

ss
 =

 k
*p

*(
b/

t)^
2 

0.3 

0.2 
1 1.5 2 2.5 3 3.5 4 4.5 

ratio of a/b 
x simply supported - > 0.75, max in center 
y simply supported -> 0.225 max in center 
x clamped -> 0.5 max at side mid long length 
y clamped -> 0.34 max at side mid short length 

Mx is max (k = 0.5) at x = a/2, i.e. at ends of short side, middle of long side

My is max (k = 0.34) at y = b/2, i.e. at ends of long side middle of short side

(think of situation in square => both are max (k = ~0.3) and equal on sides in middle)
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