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Buckling 

general 

Up to this point, the stress and deflections have been proportional to an applied load: 

e.g. σ x = M⋅ 
y bending stress proportional to moment
I 

maximum deflection of a simply supported beam subject to uniform load per unit length q => 

⋅ = 5 q L4 
deflection proportional to the uniform load.ymax 384 

⋅ 
E I⋅ 

This is not always the case, such as when compressive loads with/without lateral loads act on a column (beam).
Moments, stresses and deflections will NOT be proportional to axial loads, but will be dependent (not proportional)
to deflections, thus sensitive to slight initial deflections and/or eccentricities in the application of the load. 

Euler buckling (derived from general case of beam-columns including lateral load q(x)) 

consider: 

x 

dyy
q 

P P 
M+dM/dx*dx 

q 

P 
P 

dx 

M 

V 

V+dV/dx*dx 

ΣFy_dir = 0 => 

 

V + 
d
d
x

V dx 
 
− V + q dx  = 0 => ( )  := − 

d
d
x 

( )  (1)⋅ ⋅

and ΣMA = 0 => M + 
d M ⋅dx − M − 

V +  
d V⋅dx

⋅dx − ( )⋅dx⋅ 
dx 

− P⋅d y dx  = 0 =>⋅ 
dx   dx   2 dx 

d M − P⋅d y = V  (2)
dx dx 

as in previous bending: M x  ( )  = E I⋅ d4 
( )( )  := −E⋅I⋅ d2

2 ( ) => − d2

2M x  ⋅ 4dx dx dx 

using (1) and (-) the derivative of (2) wrt x; − 
d 
 

d M − P⋅d y  = −
d V = q(x) => 

ddx x  dx  dx  

d4  d2  
E I⋅ 4 ( )  + P⋅ 2 ( )  = q(x) or setting k :=

P 
E I⋅ 

=>⋅ 
dx  dx  

d4

4
 ( )  + k2

⋅ d2

2 ( )  
 

= ( )  euler buckling uses q = 0 which we will do now
⋅dx  dx  E I
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y x y x

y 0 y L

general solution is: y x  ⋅( ) := A⋅sin(k⋅x) + B⋅cos (k⋅x) + C x  + D 

check => 	 d4

4 


 ( )  + k2

⋅ d
2

2 ( )  
 
→

 

0  
dx  dx   0  

now apply to column with pinned ends: 

x 

Py P 

boundary conditions are: y(0) = y(L) = 0 

and d2 
( ) = d2 

( )  = 0 (no bending moment at the ends)2 2dx dx 

y(0) = 0 
y(L) = 0 A sin k L⋅( ⋅ B cos k L⋅( ⋅+ C L⋅+ D+  = 0 

2 x 
y 0( )d 

d 

2 
= 0 k2

− A⋅ sin k 0⋅( ⋅ k2 B⋅ cos k 0⋅( ⋅−  = - k2 B⋅  = 0 

2 x 
y L( )d 

d 

2 
= 0 k2

− A⋅ sin k L⋅( ⋅  = 0 => A sin k L⋅( ⋅  = 0  relation above 

this leaves A sin k L⋅( ⋅  = 0 sin k L⋅(  = 0 π 

recall that k^2 = P/(E*I) n π⋅ 
L 

  
 

 
 

2 
= P/(E*I) Pcr 

when Pcr n π⋅( 2 E I⋅ 

L2 
⋅:=  the displacement is then: y x( ) A sin k x⋅( ⋅:=  where A can be any value. i.e. 

with P < Pcr the trival solution applies y = 0, but at Pcr y(x) can be >0 and arbitrary. 

minimum P 
cr 

occurs when n = 1 => Pcr π
2 E I⋅ 

L2 
⋅:=  sometimes labeled P 

E 

=> B + D = 0 
=> ) )

=> ) ) => B and D = 0 

=> ) ) C = 0 from the y(L) = 0=> 

) which has a non trivial solution only when ) => k*L = n*

= => k^2 solution defining that force P as or .... 

) )
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let's look at a few other sets of boundary conditions and determine the Pcr by inspection: 

A. clamped - free 

x 

y P 

B. clamped - clamped 

x 

y 
P 

C. clamped - clamped, free to 
translate 

x 

y 

D. clamped - pinned, not free to 
translate 

x 

y P 

Pcr 

Pcr 

Pcr 

Pcr 

this one is not obvious (at least to me!!) let's apply boundary conditions to the general solution: 

y x  ⋅( ) := A⋅sin(k⋅x) + B⋅cos (k⋅x) + C x  + D 
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y 0 y L y L

y 0

boundary conditions are: y(0) = d ( ) = 0 ; clamped at 0and ( ) = d2 
( )  = 0 (no displacement or bending

dx dx2 

moment at L) 

y(0) = 0 => B + D = 0 (1) 
d ( ) = 0 => A*k + C = 0 (2)
dx 
y(L) = 0 A sin k L⋅( ⋅ B cos k L⋅( ⋅+ C L⋅+ D+  = 0 

2 x 
y L( )d 

d 

2 
= 0 k2

− A sin k L⋅( ⋅ B cos k L⋅( ⋅+( ⋅  = 0 A sin k L⋅( ⋅ B cos k L⋅( ⋅+  = 0 

=> C L⋅ D+  = 0 

solve for A in terms of B using (1), (2) and (3) 

(3) 

(2) 

(4) B 
sin k L⋅( − 

k L⋅ 
cos k L⋅( +  

 
 
 

⋅  = 0 sin k L⋅( − 

k L⋅ 
cos k L⋅( +  = 0 => 

k*L = sin(k*L)/cos(k*L) = tan(k*L) k_L 0 0.01, 10..:= 

intersection approaches k*L = n*π/2, with first occurrence at ~ 3 
π 

2 
⋅ 4.7= is between 4.49 and 4.5 by trial and error 

=> ) ) (3) 

=> ) )) => ) ) (4) 

has only trivial solution A = B = C = D = 0 (3) 

C = B/L => D = -B => (1) C = -D/L => 

= -B/(k*l) A = -C/k => 

=> )
) => )

)

a transcendental equation - solve graphically: 

kl := 4.4934 , 4.49341 .. 4.49342 
10 

4.4938 

tan kl 
tan(k_L) 

( )4.4936 

0 kl
k_L 4.4934 

4.4932
4.493395 4.4934 4.4934054.493414.493415

10 kl 
0 5 10

k_L 

value found by successive iteration k_L := 4.49341 tan(k_L) = 4.49342 or ... k_L1 := 4.5 
⋅i.e. k^2 = 4.49342^2/L^2 or ... Pcr := 4.493412⋅ 

E I  root(tan(k_L1) − k_L1, k_L1) = 4.4934 
L2 

to see in general form multiply and divide by π^2 

⋅ ⋅
Pcr := π

2
⋅ 

E I  and π
= 0.6992 ~ 0.7 => Pcr := π

2
⋅ 

E I  

 π
⋅L

2 4.49341 (0.7⋅L)2 



 4.49341 
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y x y x y x

y x

c 

y x

y x

we stated at the introduction to this segment that buckling was a situation where deflection was not proportional 
to applied force (i.e. general definition of force includes moment). In Euler buckling the deflection is proportional to 
axial force up to Pcr - note the proportionality is strain in the axial direction. Now let's look at a problem where 
the axial force is combined with a tranverse force Q (a point force). For simplicity we will locate it at the center of 
a beam-column so we can use symmetry. see Timoshenko & Gere section 1-3 for an arbitrary placement. (figure 
later) 

x 

y 

Q 
P P 

( )  := 
Q 
⋅x + P y  specific solution:In this case the equations are as follows: M x  ⋅

y x2 ( )  := c⋅x 
⋅

( )  := −E⋅I⋅ 
d

d

x

2

2 ( ) => 
d

d

x

2

2 

 

( )  + 
P 
⋅
⋅ ( )

 
= − 

Q x  
⋅using: M x  

E I 2 E⋅I
P 
⋅ ( )  → 

 0  = − 
Q x

⋅ 
⋅ ⋅E I   c  2 E⋅I 

and as above let k^2 = P/(E*I). leads to solution: 
−Q 

⋅ 
c := 

2 P  ( )  := 
−Q 

⋅x
( ) := A⋅cos(k⋅x) + B⋅sin(k⋅x) − 

Q x  ⋅ 2 Py x  ⋅ 
2 P⋅ 

the boundary conditions are y(0) = 0 => A := 0 

and d y 
L  = 0 => B := 

Q 
⋅ 

1 => 
⋅dx  2  2 P⋅k 

cosk⋅ 
L  

 2  
( )  := 

Q 
⋅ 

sin(k⋅x) 
− 

Q 
⋅x 

⋅ ⋅2 P⋅k  L  2 Pconsider deflection at the midpoint (maximum): 

sink⋅ 
L  

y 
L  = Q 

⋅  2  − 
Q 

⋅ 
L => y 

L  = Q 
⋅tank⋅ 

L  − k⋅ 
L  

⋅ ⋅ ⋅ 2  2 P⋅k 
cosk⋅ 

L  2 P  2  2  2 P⋅k   2  2  
 2  

following Timoshenko: let u := k⋅ 
L and using some algebra and
2 

2
⋅ ⋅substitutions; k := 

2 u ; P := E⋅I⋅k2; P := E⋅I⋅4⋅ 
u => Q = Q = 1 

⋅ 
Q L3 

⋅L L2 2 P⋅k 
⋅
 u2  2 u  16 

⋅ 
3

⋅ E I⋅u
2 E⋅I⋅4⋅ ⋅
 L2 

 
L

 

⋅which finally is = 1 
⋅ 
Q L3 

⋅ 
3
3 

=> y 
L  = 

48 E I   3 
( )  − u) 

⋅ 1 
⋅ 
Q L3 

⋅ 3 
⋅(tan u 

⋅48 E I  u  2  ⋅
u  

now why did we (Timoshenko) go to all that trouble? 
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y x

y 0

⋅The deflection at L/2 is now in a form 1 
⋅ 
Q L3 

: the deflection due to the force Q times a multiplier
48 E I⋅ 

L Lwith the following properties: (again with some substitutions) k := 
P 

E I⋅ 
; u := ⋅k  ; u := ⋅

2 2 
P 

E I⋅ 
3so when P is small ~ 0 ; ⋅(tan u( )  − u) -> 1 which can be seen by expanding tan(u) in a
3 u 

3  3  
( )  = u + 

u + ..... ; 3 
( )  − u)  = 3 

⋅u + 
u 

− u  =~ 1 or plotting: u := 0.001, 0.011 .. 1series: tan u ⋅(tan u 
3 3 3  3 u u 

1 

1.5 

2 

3 

u 3 
tan u( )  u−(⋅ ) 

also as u => π/2 tan(u) => ∞ 

L P 
E I⋅ 

π Lat this value u := ⋅  or = ⋅ 
2 2 2 

P 
E I⋅ 

⋅
P := π

2
⋅ 
E I which is the value for P above. 

crL2 

⋅using Pcr := π
2
⋅ 
E I in the definition for u => 

0 0.5 1 
L2 

u 

π 
u := ⋅

2 
P 

Pcr 

recalling that ( )  :=	
Q 

⋅ 
sin(k⋅x) 

− 
Q 

⋅x  and using this same approach: the slope at y = 0
⋅ ⋅2 P⋅k 

cosk⋅ 
L  2 P

 2  

d ( )  = Q L2 
2⋅(1 − cos u ⋅ ( )   

16 
⋅

⋅E⋅I 
⋅ 2 

( ))

 and the maximum moment is Mmax := 

Q L  
⋅ 

tan u

( )   
4  u dx  u ⋅cos u

these are both in the form of the effect of Q * a multiplier that 

=> 1 for u , P small ( => 0) and => ∞  as u => π/2 cr or P => P

6 of 33 notes_27_buckling_notes.mcd 



before leaving this approach to buckling, let's consider when q(x) is not 0 or a point but is uniform per unit length: 
for a pinned column: see this link 

Reference:C:\Documents and Settings\Dave Burke\My Documents\structures\overall_technical\buckling\eqn_11_3_1.mcd(R) 

the result is: (for wmax) as stated in Hughes equation (11.3.1) 

wmax ξ 
⋅ 

( ) − 1 −
ξ

2 

 

with ξ := 
L 
⋅( ) := 

5 q⋅L4 
⋅
 24 

⋅sec ξ 
384⋅E⋅I 


 

5⋅ξ
4  2  

2 
P 

E I⋅ 

⋅ ( ))Mmax := 
q L2 

2⋅(1 − sec ξ
8 

⋅


 

ξ
2 

 
note that ξ is the u above and w is y. The section is titled "use of the magnification factor". 

a few more things to deveop for euler and general elastic (and other) buckling: 

recall the definition of the radius of gyration = ρ  defined such that I := ρ 
2
⋅A  or ρ :=

I 
A 

and 

the definition of stress is force (P) / area (A). 

π
2
⋅ 
E I⋅ 

⋅
σ cr := 

Pcr 
σ E := 

Pcr 
Pcr := π

2
⋅ 
E I  

σ E := 
L2 

σ E := π
2
⋅ 

E 
A A L2 A 

 L 
2 

 
 ρ  

a typical plot of euler stress vs L/ρ (slenderness ratio): 

Le_over_ρ := 80 , 81 .. 300 σ Y := 30000 E := 30⋅106 
σ E(Le_over_ρ) := 

π
2
⋅E 

Le_over_ρ
2 

5 .104 

4 .104 

σE(Le_over_ρ)3 .104 

σY
2 .104 

as can be seen, the euler stress is yield when 

π
2

E ⋅

σ Y 

π
2
⋅E = σ y or Le_over_ρ :=  i.e. 

Le_over_ρ
2 

Le_over_ρ = 99.3 
1 .104 

to understand the slenderness ratio better and the 
difference between slender and "squat" (short fat)
columns consider the following example.

0 
0 100 200 300

Le_over_ρ 
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Residual stresses from rolling or welding lead to reductions in modulus: 

3 .104 

the decrease in E = d σ  approximates a parabolic
dε 

2 .104 shape above a value of σav defined as the 
σ Y

σav structural proportional limit typically σ spl := 
2 

e.g. 

1 .104 above the proportional limit: 

0 Ets(σ av) := 
σ av⋅(σ Y − σ av)

⋅E 
0 5 .10 4 0.001 0.0015 0.002 σ spl⋅(σ Y − σ spl)

ε σav)( 

redefining because the modulus is reduced only above the proportional limit 

Ets(σ av) := if 

σ av > σ spl,

σ av⋅(σ Y − σ av)
⋅E , E

 

 σ spl⋅(σ Y − σ spl)  3 .104 

σav 
2 .104 

σspl 
1 .104 

0 
0 1 .107 2 .107 3 .107 

Ets(σav) 

with some algebra and designating σult as σav an expression for σult vs. Le_over_ρ results: 

Le_over_ρ := 50 .. 180 

σ ult(Le_over_ρ) := 
 

1 −
σ spl 

⋅
 

1 −
σ spl 

⋅ 
σ Y  

 σ Y  σ Y  σ E(Le_over_ρ) 
⋅σ Y

4 
recall from above: 

σult(Le_over_ρ) 

σY 
σ E(Le_over_ρ) := 

π
2
⋅E 

2 Le_over_ρ
2 

σE(Le_over_ρ) 

σY 

0
50 100 150 200

Le_over_ρ 
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if we define a ratio λ := 
σ Y 

σ E σ E 
defined as the column slenderness parameter which => σ E λ( ) := 

σ Y 

appears above (as λ^2) λ
2 

σ ult becomes ( ) := 
 

1 −
σ spl 

⋅
 

1 −
σ spl 

⋅λ
2


⋅σ Yσ ult λ 

 σ Y  σ Y   

applying when σspl < σult < σY, and limiting σE to σY  => 

  σ Y   
 

( ) := min  σ Y   => σ ult λσ E λ ( ) := if

λ ≤ 2, 


1 −

σ spl 
⋅

 1 −

σ spl 
⋅λ

2


⋅σ Y,

σ Y 
 

  λ

2 
  

  σ Y  σ Y   λ
2 



λ := 0.0, 0.01 .. 2 

λ
2 

reduces to: 1 − 
4 

( )  0.8σult λ 

σY 
0.6 when σspl/σY = 0.5 as 

σE λ( )  shown here. 
σY 

0.4 

0.2 
0 0.5 1 1.5 2

λ 

E⋅ 
I 

⋅ ⋅
PE = π2

⋅ 
E I  

ρ
2 = I PE = σ E = π2

⋅ 
E I  

⋅ 
1 = π2

⋅ 
A = π2

⋅ 
E⋅ρ

2 
= π2

⋅ 
E = σ E 

L2 A A L2 A L2 L2 
 L 

2 

 
 ρ  
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other factors that affect column behavior are not being perfectly straight and application of the load off center 
these are termed eccentricity in geometry and load application. Consider first geometry: for a column with an 
initial deflection δ(x) (ref: Hughes pp 394 ff): 

P P 

wt 
w(x) Pd2

2w + 
E I  

⋅(δ + w) = 0
dx ⋅ 

x 
δ(x) 

assuming a sinusoidal (Fourier series) deflection results in a deflection wT 
PE 

PE P− 
δ⋅:= δ 

this has the property we saw earlier, a result with a magnification factor φ  as 
wT φ δ⋅:= δ. 

When P is small the deflection matches δ. When P approaches the euler value, the 
deflection is very large. The deflection is continuous, not proportional to P. 
deflection curves for eccentric columns are shown in fig 11.8 and below

PE 10:= wT 0.01 0.015, 0.3..:= P wT δ,( PE 1 
δ 

wT 
− 

 
 

 
 

⋅:= 

The load 

) 

0.4 
10 

P wT, .01)(
wT 0.2 

P wT, 0.02) 5( 

0 
0 5 10 0 

0 0.1 0.2 
P wT, 0.01)( wT

total displacement vs. applied force P figure 11.8 

eccentricity in load application is derived in Timoshenko with the same form with different magnification factor: 
 π P 

PE 

 
⋅ φ  :φ:= sec  ⋅ M := P e⋅

 2  

P P 

wt 

x 

w(x) 

e 
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∆

∆

∆ 

δ 

This factor approximates the factor for geometry, as can be seen from the following plots so it is simpler to use the 
geometry magnification factor for both effects 

1  π 
P_over_PeP_over_Pe := 0, 0.01 .. 0.6 φ1(P_over_Pe) := 

1 − P_over_Pe 
φ2(P_over_Pe) := sec 


 

2 
⋅

 
3 

1.15 

φ1(P_over_Pe) 
φ2(P_over_Pe) 1.1 

2
φ2(P_over_Pe) φ1(P_over_Pe) 1.05 

1 

1 0.95
0 0.2 0.4 0.6 0 0.2 0.4 0.6 

P_over_Pe , P_over_Pe P_over_Pe 

this allows us to combine the two eccentricities δ (geometry) and e (off center load) such that ∆ := δ + e 
the "magnified" deflection becomes ∆*φ the moment from the applied force P then becomes M := P⋅ φ∆⋅ 
the total stress in a column accounting for both compression and bending is then: 

P P 

w w(x) 

δ(x) x 
e 

P P⋅ φ∆⋅
σ max := +  where Z is the modulus in the direction (extreme fiber) that undergoes compression. this

A Z 

Z I 1 ρ
2 

expression can be rearranged as follows: defining rc :=  = ⋅  = where c is the distance of the 
A c A c 

extreme fiber (compression side) to the neutral axis. 

∆⋅
σ max := 

P 
⋅1 + 

∆ φ  = σ max := 
P 
⋅1 + 

∆ 
⋅φ where ∆ = eccentricity ratio.

A  Z A  rc  rc 
 A  

estimates for eccentricity ratio have been accepted based on experimental evidence as proportional to slenderness 
Le ∆ Le P  Le ratio i.e. = α⋅  and σ max  becomes σ max := ⋅1 + α⋅ ⋅φ 
ρ rc ρ A  ρ  
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PE ; designate P as P and declare "failure" when σ max = σ YPE − P ult
if we now replace φ by φ :=

 Le   Le  
 α⋅ ⋅PE  α⋅ 

we obtain σ Y := 
Pult 

⋅1 +
ρ eqn 11.2.1 rearranged => σ Y := 

Pult 
⋅1 + 

ρ  
A  PE − Pult  A  Pult  

 1 − 
 PE  

 Le  
 α⋅ 

or in terms of stress σ Y := σ ult⋅1 + 
ρ  eqn 11.2.2 σ ult is the applied stress that will result in yield

 σ ult  
 1 − 
 σ E  

after accounting for the magnification factor as developed above. 

σ ult α⋅Lif we define R :=  ; η :=  ; and use the column slenderness parameter λ :=
σ Y 

σ E 
or 

σ Y ρ 

L σ Y 

E 

σ ult
λ := ⋅  to solve eqn 11.2.2 above for R :=  we obtain a quadratic equation for R

π ρ  σ Y⋅ 

(1 R)⋅(1 − λ
2
⋅R)  = η⋅R  with solution (taking the negative sign in the quadratic term) and a lot of algebra:−

the Perry Robertson column formula results: 

( ⋅λ := 0.01 , 0.02 .. 1.5 
α1 := 0.003 η α ,λ) := 


α π⋅ 

E 
σ Y 


⋅λ 

  

 ( 1 
4 

1 
1 η α  λ, ( + 

λ
2 

+ 
 
 



 

2 
⋅

1

λ
2 

− 
)  

,R(α λ) :=  1 
⋅1 + 

1 + η α ,λ)  −  
 2
  λ

2 
 

 

  σ Y   
  

as above euler = σ E λ( ) := min  σ Y   and tangent modulus 
  
  λ

2 
  

( ) := if

λ ≤ 2, 


1 −

σ spl 
⋅

 1 −

σ spl 
⋅λ

2


⋅σ Y,

σ Yσ ult λ
  σ Y  σ Y   λ

2 
  
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Lcol

Lcol 

γC 

comparison of these different approaches => 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0.2 

0.4 

0.6 

0.8

1 

R α 1 λ , ( 
σE λ( )  

σY 

σult λ( )  

σY 

) 

λ 
Perry Robertson 
Euler 
tangent modulus 

,
this is CCB taking R(α λ) := 

σ ult(α λ) 
with α := .002  from Table 11.1 and assuming Le := .7⋅Lcol  in, 

σ Y 

 Lcol calculating λ and η := α⋅ σ ult is the applied stress that will result in yield after accounting for the
 ρ  

magnification factor 
P  σ a 

σ ult = R⋅σ Y σ a := γRCCB := γC⋅A  σ ult  
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Page 322 S&J: The civil engineers use a curve similar to this for column design Table in manual of steel 

construction:

the loads include a resistance factor (1/PSF) of 0.85. From LRFD spec E-2. Curve 2 fit to out-of-straightness 

=1/1500.


( ) := if 

λ ≤ 1.5, 0.658λ 

2 
⋅σ Y , 

0.877 
⋅σ Y 

 
SSRC guide S&J pg 322 σ c λ

 λ
2 

 

1 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 

civ eng practice 
ultimate stress 

length ratio = 

euler 

Check using column table pg 2-35 Manual of Steel Construction (MSC) 
KL=10ft, nominal diameter = 10 in, extra strong. φ = resistance factor.  Load = 465,000 lbs 

redefining values for MSC 
le := 10⋅12 A := 16.1 ρ := 3.63 φ := 0.85 

σ Y := 36000 E := 29000000 

le
λ := ⋅ 

σ Y 

π
2

E ⋅

λ = 0.3707 
ρ 

( ) := if 


λ ≤ 1.5, 0.658λ 

2 
⋅σ Y , 

0.877 
⋅σ Y 

 
P λ ( )  A⋅SSRC guide S&J pg 322 σ c λ

λ
2 

 
( ) := σ c λ ⋅ φ  

 

( ) = 465117 compares to 465 ksi in tablereset yield, modulus and curve to general values P λ

( ) := if 

λ ≤ 1.5, 0.658λ 

2 
⋅σ Y , 

0.877 
⋅σ Y 

 
σ Y := 30000 E := 30⋅106 

σ c λ 
  λ

2 
 

cr
iti

ca
l s

tre
ss

/y
ie

ld
 st

re
ss

 

14 of 33 notes_27_buckling_notes.mcd 



Accurate design curves, figures 11.11, 11.12, 11.13 

define E to SI units per text 

E := 200000 

α := 0.002 choose α based on column shape, α = 0.002 for circular 

Le_over_ρ := 1 .. 150 

λ(Le_over_ρ σ  Y) := 
Le_over_ρ

⋅, 
π 

η α , Le_over_ρ,σ Y) := if 

λ(Le_over_ρ σ  Y) ≤ 0.2, 0, 


α⋅π⋅ 

E 
σ Y 


⋅(λ(Le_over_ρ σ  Y) − 0.2) 

σ Y 

E 

( , , 
    

 ( 1 
4 

1 
1 η α  Le_over_ρ, Y, ( + 

λ Le_over_ρ σ  Y, ( 2 
+ 

 
 
 

 

 

2 

⋅
1

λ Le_over_ρ σ  Y, ( 2 
− 

σ ) 
) )

 
σ u(α , Le_over_ρ,σ Y) :=  1 

⋅
1 + 

1 + η α , Le_over_ρ,σ Y) 
−  

 2  ,  λ(Le_over_ρ σ  Y)2 
 

 

400 σ u(α , 90 , 200) = 147.5465 

350 text has ~ 150 fig 11.11 

300 

σu(α , Le_over_ρ, 400) 
250 

σu(α , Le_over_ρ, 300) 

σu(α , Le_over_ρ, 200) 200 

150 

100 

50 
0 50 100 150

Le_over_ρ 
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revisiting the Perry Robertson relationship with λ offset redefine E to Emglish units 

λ := 0.01 , 0.02 .. 1.5 α1 := 0.003 α2 := 0.002 E := 30⋅106 

(η α ,λ) := if 

λ ≤ 0.2, 0, 


α⋅π⋅ 

E 
σ Y 


⋅(λ − 0.2)

 

    

 ( 1 
4 

1 
1 η α  λ, ( + 

λ
2 

+ 
 
 



 

2 
⋅

1

λ
2 

− 
)  

,σ u(α λ) :=  1 
⋅1 + 

1 + η α ,λ)  − 

⋅σ Y 2

  λ
2 

  

1 

σu(α 1 , λ ) 0.9 

σY 

σu(α 2 , λ ) 0.8 

σY 

σE λ( )  0.7 

σY 

( )  0.6σult λ 

σY 

σc λ( )  0.5 

σY 

0.4 

0.3 
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

λ 
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P 

Timoshenko Th of Elas Stab sect 1.7 
1 can be used as approximation of all amplification factors, χ(u), η(u) and λ(u) good for 

1 − 
P P/Pe<0.6 

Pcr 

⋅ P 
⋅u := 

k l  
k_sq := 

E I  Pcr := 
π

2
⋅E⋅I P_over_Pcr := 

k2
⋅E⋅I 

⋅l2 
P_over_Pcr :=  

k l  
2 

2 ⋅ 
l2 π

2
⋅E⋅I  π  

2
⋅u  ( )u := 

π
⋅ 

P 
Pcr 

P 
P_over_Pcr :=  

2 u  
P_over_Pcr u 

2  π 
1

φ u( )  := 
2

⋅
1 −  

2 u   or using u=k*l/2 and k=sqrt(P/EI) and EI=Pcr*l2/π2 

 π  
amplification factor for:simply supported, 
Q at center 1-14 uniform distribution q 1-21 couple at ends 1-33 

2
⋅ 2 u  :=  

 π  

π 
u := ⋅

2 
P 

Pcr 

P 

moment for couple 

χ u 
( )  − u) 

η u 
( )  − 2 − u2) λ u 

( )) sec u 
( )  := 

3⋅(tan u 
( )  := 

12⋅(2⋅sec u ( )  := 
2⋅(1

2 

− cos u ( )  

3 5 u4 u ⋅cos u u ⋅ 
( )  

( )  η u ( )  sec u 
u := 0.001, 0.002 ..

π 
− 0.1 

χ u 
, 

( )  
,
λ u 

, 
( )  notice scale 

2 φ u ( )  φ u ( )( )  φ u ( )  φ u 

10 

1.2 
8 χ ( )u 

φ u
( )  

( )
φ u 1.15 

η u
χ ( ) 6 

( )
u 

φ u( )  
η u( )  1.1

λ ( )u 
λ ( )  4 φ u u ( )  

( )  ( ) 1.05sec u sec u

φ u( )
2 

1 

0 0.95
0 0.5 1 1.5 0 0.5 1 1.5 

u u 
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1  π 
P_over_PcrP_over_Pcr := 0, 0.01 .. 0.6 φ1(P_over_Pcr) := 

1 − P_over_Pcr 
φ2(P_over_Pcr) := sec 


 

2 
⋅


fig 1-9 T&G 

2.5 

φ2(P_over_Pcr) 
2

φ1(P_over_Pcr) φ1(P_over_Pcr) 1.1 

φ2(P_over_Pcr) 1.12 
1.5 

1 
0 0.2 0.4 0.6 

1 
0 0.2 0.4 0.6 P_over_Pcr 

P_over_Pcr < 12% variation in text for P_over_Pcr < 0.5 

l := 4 a1 := 1 a2 := 10 

α := 1.1 watch curve change shape as α -> 1. This is result if second term dominates 
x := 0, 0.1 .. l initial shape. i.e. y1 has two terms. 

y1(x, α) :=	
α⋅a1 

⋅sin 
π⋅x  + 

α⋅a2 
⋅sin 

2⋅π⋅x  
1 − α  l  22 

− α  l  

0 

5 

y1(x , α ) 

10 

15 
0 1 2 3 4

x 
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Beam column notes 
u := 

l 
⋅ 

P 
E I⋅ 

q := 1 P := 1 I := 1 
2 M0 := 1 φ := 1 

∆ := 0 

⋅
( )  := 

5 q⋅l4 
⋅
 24 

⋅
 

sec u ( )  := 
q l2 

2⋅(1 − sec u 
(at x= l/2) wmax u 

384⋅E⋅I 

 5 u2  

( )  − 1 − 
u
2

2 








 Mmax u 
⋅ 

8 
⋅
 u2 

( ))

 

(11.3.2) see 
⋅ note below 

re:sign 

( )  + ∆) ∆ = total eccentricity as in columnMmax := M0 + P⋅φ⋅(wmax u

comparison of magnification factors; using u=k*l/2 and k=sqrt(P/EI) and EI=Pcr*l2/π2 

P_over_Pcr := 0.0001 , 0.01 .. 0.6 

π 
φ1(P_over_Pcr) := 

1 u(P_over_Pcr) := ⋅ 
21 − P_over_Pcr 

P_over_Pcr 

24⋅
 

sec(u(P_over_Pcr)) − 1 − 
u(P_over_Pcr)2  

 2 φ2(P_over_Pcr) := 

5⋅u(P_over_Pcr)4 

1.003 

1.002 
φ2(P_over_Pcr) 

φ1(P_over_Pcr) 
1.001 

1 
0 0.1 0.2 0.3 0.4 0.5

P_over_Pcr 

Mmax1(P_over_Pcr) := M0⋅
2⋅(sec(u(P_over_Pcr)) − 1) 

 u(P_over_Pcr)2 

 sign is reversed in text. see P&G eqn 1-23 

Mmax2(P_over_Pcr) := M0 + P⋅φ⋅(wmax(u(P_over_Pcr)) + ∆) 
which after using wmax and P = P_over_Pcr * Pcr becomes with ∆ = 0 

Mmax2(P_over_Pcr) := M0⋅1 + P_over_Pcr⋅φ1(P_over_Pcr)⋅π
2
⋅ 

5  
 48  

P_over_Pcr := 0.5 φ1(P_over_Pcr) = 2 

analytical using φ estimate 

Mmax1(P_over_Pcr) = 2.0299 Mmax2(P_over_Pcr) = 2.0281 Mmax2(P_over_Pcr = 0.5) = M0⋅1 + 
5 
⋅π

2 
 48  

comparison of analytical vs. M due to bending plus P * displacement (magnified) 

P_over_Pcr := 0.0001 , 0.01 .. 0.99 
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Le_over_ρ

Mmax 
0 δ

1.004 

Mmax1(P_over_Pcr) 
1.002 

Mmax2(P_over_Pcr) 

1 
0 0.2 0.4 0.6 0.8

P_over_Pcr 

This assumption regarding magnification factor φ allows using a relationship similar to the Perry-Robertson above 
with some additional terms to account for the bending moment and displacement (magnified) due to the transverse 
loading. This is combined with the eccentricity due to the column eccentricity 

Mmax := M0 + P⋅φ⋅(δ0 + ∆) σ max := 
P 
+ 

Mmax using φ1(P_over_Pcr) := 
1 

σ max := σ YA Z 1 − P_over_Pcr 

Pult M0 Pult⋅(δ0 + ∆) 
=> σ Y = 

A 
+ 

Z 
+
 Pult  which after rearranging and defining some non-dimensional factors
1 − 

PE 
⋅Z becomes: 

values due to uniform distributed loading  1 
4 

1 µ − 
1 η + 

λ
2 

+ 
 
 

 

 

2
⋅

1 µ − 

λ
2 

− 
 

, 
(pressure*breadth). 

σ u(λ η ,µ) :=  1 
⋅1 − µ + 

1 + η  − 

⋅σ Y 2 


⋅ ⋅
δ0 := 

5 q⋅l4 
M0 := 

q l2   λ
2 
 

384⋅E⋅I 8 
rc = core radius 

 
M0  

M0with 
λ(Le_over_ρ) := 

σ Y 

σ E rc := 
ρ

2 
rc := 

I µ = 
σ 

Z

Y 

 = 
Z⋅σ Yc A c⋅ 

λ(Le_over_ρ) := 
Le_over_ρ

⋅ 
σ Y 

E 
η := 

(δ0 + ∆)
⋅A η := α⋅Le_over_ρ + 

δ0 

π Z rc 
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figure 11.14 is parameterized by η and µ 

λ := 0.01 , 0.02 .. 2 η := 0.2 µ1 := 0.2 µ2 := 0.6 

1 

,σu(λ η , µ 1) 
σY 0.8 

,σu(λ η , µ 2) 
σY 

σE λ( )  0.6 

σY 

( )σult λ

σY 0.4 

0.2 
0 0.5 1 1.5 

λ 

a few values from text to check. To avoid singularity in mathcad, λ set close to 0 

λ0 := 0.0001 
text has 0.83, 0.57, 0.38, 0.29 

σ u(λ0, 0.2, 0) σ u(λ0, 0.6, 0.4)
= 0.8333 = 0.375 

σ Y σ Y 

σ u(λ0, 0.4, 0.2) σ u(λ0, 0.4, 0.6)
= 0.5714 = 0.2857 

σ Y σ Y 
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L L

L

L 
L

y x

L 

L

M L
L

Beam Column (page 401 of text) this was copied from notes 28 
beam column and added here 

clamped clamped beam column 

q
P P 

reset: 

 2 L⋅ L⋅
M x( )  := −q⋅ x 

− 
L x  

+ 
L2  

( )  :=	
q 
⋅
 x4 

− 
L x3 

+ 
L2
⋅x2  

⋅ 2 2 12  E I   24 12 24  

M 0( )  →
−1 

⋅ ⋅L2 

 2  384 E I12
q y 

L  → 
1 

⋅ 
q 
⋅
⋅L4 

δo := y 
L  δo → 

1 
⋅ 

q 
⋅L4 

 2  384 E I⋅ 

M 
L  → 

1 
⋅ ⋅L2 

1 2  24 
q 

Mcenter := 
24 

⋅q⋅L2

( )  →
−1 

⋅ ⋅L2 
−1 2 moments at center and ends12 

q 
Mend := 

12 
⋅q⋅L 

============================================================================== 
find locations where M(x) = 0 

  1   1   

( )  = 0 Find x 
  2 6  2 6 

Given M x  ( )  → 


 1 

+ 
1 
⋅32 


⋅L 

 1 
− 

1 
⋅32 


⋅L 



 x1 :=  

1 
+ 

1 
⋅ 3⋅L x2 :=  

1 
− 

1 
⋅ 3⋅L 

1  2 6   2 6  

distance between M(x) = 0 x1 − x2 simplify → 
1 
⋅L⋅32

1 13 ν := 
3 
⋅L 

3 
= 0.5774 ν := 0.577 

max deflection (at center) 
δo := y 

L  δo → 
1 

⋅ 
q 
⋅
⋅L4 

δo := 
1 

⋅ 
q 
⋅L4 

 2  384 E I  384 E I⋅ 

( )
deflection at M(X) = 0 

y x1 
expand → 

4 4 
= 0.4444 γ := 0.444 

δo 9 9 
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L

L

L

observations of clamped/clamped beam due to uniform load 

1 2fraction of length between M(x) = 0 ν := 0.577 moment at center Mcenter := 
24 

⋅q⋅L 

moment at ends −1 2 
fraction of δo associated with end section γ := 0.444 Mend := 

12 
⋅q⋅L 

deflection due to q δo := 
1 

⋅ 
q 
⋅L4 

384 E I⋅ 

0 

0.5 

1 

make into two "simply supported" (based on M(x) = 0) problems 

q
P P 
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Mmax φ

oδo

LL

q


q 

P P 

P 

P 

P 
P 

endscenter 

Lcent := ν⋅L Lend := (1 − ν)⋅L 

⋅δoδcent := (1 − γ)⋅δo δcent := γ δ  

1 Mend →
−1 

⋅ ⋅L2 

Mcenter → 
24 

⋅q⋅L2 12
q

apply beam column pinned pinned relationships to each segment 

Mmax := M0 + P⋅φ⋅(δ0 + ∆) σ max := 
P 
+ 

Mmax 
σ Y = 

Pult 
+ 

M0 
+ 

Pult⋅(δ0 + ∆) 
=> σ max := σ YA Z A Z	  Pult  

1 − ⋅Z 
 PE  

1using φ1(P_over_Pcr) := 
1 − P_over_Pcr 

which after rearranging and defining some non-dimensional factors 
becomes: 

 1 
4 

1 µ − 
1 η + 

λ
2 

+ 
 
 

 

 

2
⋅

1 µ − 

λ
2 

− 
 

σ u(λ η ,µ) :=  1 
⋅1 − µ + 

1 + η  − ⋅σ Y see beam column summary at, 
 2
  λ

2 
 

 this point 
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