
Intro to Matrix Analysis ORIGIN := 1 

consider a 2-D structure consisting of four elements, linked at pinned joints with six nodes: 
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consider one of the elements, say element # 4 

LINEAR ELASTIC behaviour and equilibrium => 

F = K⋅∆ + fp + fε0 

where F = forces at nodes (any direction => 
two at each node in X and Y) 

fp is the equivalent nodal force resulting in the 
same REACTION to the distributed pressure 

fε0 is the same for initial strain/stress in the 
element due to fit, temperature, etc. 

Fx and Fy are the external forces applied at node 4 
p a distributed pressure on element #4 

we attribute LINEAR ELASTIC 
behaviour to the structure and in turn to 
each of the elements: 
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F = forces at each node 

for an example of the eqivalent nodal force consider the following uniformly loaded beam: 

p 

L 

has reaction forces 

⋅ 
note: p and R 

R1 = p L  have opposite
2 directions in 

this example 

p 

L
R1 R2 

a force of p*L/2 in the same direction as p will create the same rection force 
hence 

LL R2 

p*L/2 p*L/2 

R1 fp = p⋅ 
2 
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henceforth we will assume that the nodal forces already account for the equivalent of distributed forces and that 
initial stress/strain = 0 therefore: ... 

F = K⋅∆ i.e. The nodal force is linearly proportional to the displacement of the nodes 

for the fourth element this is expressed as:... nod_el := 3 

 Fe1   
Ke1 1  Ke1 2  Ke1 3   

 ∆e1  , , , 

 
, , ,Fe → 

 
Fe2 


 

Ke → 

 Ke2 1  Ke2 2  Ke2 3  

 
∆e →  ∆e2  

 Fe3  
 

Ke3 1  Ke3 2  Ke3 3   

 ∆e3  , , , 

Ke = element stiffness matrix which for now we will assume can be determined by experiment or analysis 
similarly a matrix can be found such that:... 

σe = Se⋅∆e Se = element stress matrix 

remember that F and ∆ in this two dimensional example each have two components X & Y 

 FeX1  
 

U1  U is X displacement


 FeY1   V1  V is Y displacement

   

 FeX2   U2  and Ke is a 6 x 6 matrix of coefficients.


Fe :=   ∆e :=   we will express the relationship as above until later 
 FeY2   V2  
 FeX3 

  U3 
 

    
 FeY3  


 

V3  

this examaple is 2-D pinned and involves only X and Y forces and displacements

were this to include clamped joints, there would be a moment and resulting rotation θ for 3 components at each 

node Fx, Fy, M and U, V, θ

if this were 3_D, there would be three forces and three moments at each node


later we will also see the concepts of "force" and "displacement" to be generalized and include imposed moments 

and resulting rotation θ and termed "degrees of freedom"


the solution to these problems involves three concepts: 
equilibrium (of "generalized" forces) 
compatibility (of displacements or "degrees of freedom") 
material behavior 

and we will operate in three coordinate systems: 
global or overall structure 
element in structure system and ... 
an element coordinate system 
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above we have expressed the linear elastic behavior of the element in the structure coordinate system 
and could do the same for each element. We might have to "pad" some matrices (add some 0 to get the same 
number of rows and columns for operations below. 

 , , , Fe1   
Ke1 1  Ke1 2  Ke1 3  	  ∆ 1  

 
Fe := 

 
Fe2 


 

Ke := 

 Ke2 1  Ke2 2  Ke2 3  

 ∆e :=  ∆ 2 , , , 
 Fe3  

 
Ke3 1  Ke3 2  Ke3 3    ∆ 3  , , , 

let's now operate in the structure coordinate system and develop some information about the system K (stiffness 
matrix) in the relation: 

F = K⋅∆ where .... 

 , , , , , , F  
 

K1 1  K1 2  K1 3  K1 4  K1 5  K1 6    ∆  
 

, , , , , ,  F   K2 1  K2 2  K2 3  K2 4  K2 5  K2 6    ∆       
, , , , , ,

F → 
 F 

 K → 
 K3 1  K3 2  K3 3  K3 4  K3 5  K3 6  

 ∆ →  ∆  

, , , , , , F   K4 1  K4 2  K4 3  K4 4  K4 5  K4 6    ∆  
  

 , , , , , , 
 

 F 
 


 

K5 1  K5 2  K5 3  K5 4  K5 5  K5 6  
  ∆  

 , , , , , , 
 F  


 

K6 1  K6 2  K6 3  K6 4  K6 5  K6 6   
 ∆  

with each node having two or more degrees of freedom i.e. 

F is an n x 1 vector

K is a n x n matrix

∆ is an n x 1 vector 

where n is the number of degrees of freedom at each node


now to address the structure let's "pad" the element and express the components of nodal force and 

displacement in strucuture coordinates: the element node 1 corresponds to structure node 4 etc. so we could 

first say: ....


 , , , Fe4   
Ke1 1  Ke1 2  Ke1 3   


∆4  

 Ke1 1⋅∆4 + Ke1 2⋅∆5 + Ke1 3⋅∆6  , , , 

, , ,Fe → 
 

Fe5 

 

Ke → 

 Ke2 1  Ke2 2  Ke2 3  

 ∆ → 


∆5  Ke⋅∆ → 
 

Ke2 1⋅∆4 + Ke2 2⋅∆5 + Ke2 3⋅∆6 
, , , 

 , , ,  Fe6  
 

Ke3 1  Ke3 2  Ke3 3    ∆6  
 

Ke3 1⋅∆4 + Ke3 2⋅∆5 + Ke3 3⋅∆6 , , , 

or ... with no loss in accuracy padding the nodes not related to the fourth element ... 
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 Fe1  
  0 0 0 0 0 0   ∆1  Fe2 

 
 

0 0 0 0 0 0  


∆2  
 Fe3   0 0 0 0 0 0    

Fe → 
 Fe4 


 

Ke → 
 

0 0 0 Ke1 1  Ke1 2  Ke1 3  
 ∆ →  ∆3  

, , ,  ∆4  
 Fe5 


 


 

0 0 0 Ke2 1  Ke2 2  Ke2 3  
 




∆5 
 

 , , , 

 Fe6  

 

0 0 0 Ke3 1  Ke3 2  Ke3 3   

 ∆6  , , , 

note that in this expression, we have expanded ("padded") the F and ∆ vectors to include the unrelated nodes with 
no loss in accuracy as ... 

 0  
 
 0  
 0  which compares with the values above 

Ke⋅∆ →

 Ke1 1⋅∆4 + Ke1 2⋅∆5 + Ke1 3⋅∆6 


, , , 

 
 

Ke2 1⋅∆4 + Ke2 2⋅∆5 + Ke2 3⋅∆6 , , , 

 
 

Ke3 1⋅∆4 + Ke3 2⋅∆5 + Ke3 3⋅∆6 , , , 

we're now going to change nomenclature to allow including an additional element say element #3 

first so we can keep track we'll rename the previous sttiffness matrix Ke4 

 Fe41   0 0 0 0 0 0   0   Fe42   0 0 0 0 0 0  
 0    0 0 0 0 0 0   0  

Fe4 → 

 

Fe43 
 Ke4 → 

 
0 0 0 Ke41 1  Ke41 2  Ke41 3  

 
, , ,  Ke4⋅∆ → 

 
Ke41 1⋅∆4 + Ke41 2⋅∆5 + Ke41 3⋅∆6 


, , , Fe44   0 0 0 Ke42 1  Ke42 2  Ke42 3  


 Fe45 

  , , ,  

 
Ke42 1⋅∆4 + Ke42 2⋅∆5 + Ke42 3⋅∆6 
 , , ,


, , , Fe46  

 0 0 0 Ke43 1  Ke43 2  Ke43 3   

 
Ke43 1⋅∆4 + Ke43 2⋅∆5 + Ke43 3⋅∆6  , , , 

now suppose another element (#3) has nodes 2 and 5 so node 5 is a common node 
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 Fe31  N.B. only
  0 0 0 0 0 0   0  components for
 Fe32 

 

 

0 Ke31 1  0 0 Ke31 2  0 
 


 

Ke31 1⋅∆2 + Ke31 2⋅∆5  
F2 and F5 and ..

 , , , , only two nodes for
 Fe33   0 0 0 0 0 0   0  this element

Fe3 →   Ke3 →   Ke3⋅∆ →   
 Fe34   0 0 0 0 0 0   0  
 Fe35 

  0 Ke32 1  0 0 Ke32 2  0   Ke32 1⋅∆2 + Ke32 2⋅∆5  , , , ,    
 Fe36 

 0 0 0 0 0 0   0  
 

now we can use equilibrium for forces at the nodes as follows from these two elements: ... 
obviously complete equilibrium requires all nodes ... 

F := Fe3 + Fe4	 this states that the external force at each node is in equilibrium with the 
components of that force for each element 

note .. elements with no connection contribute nothing ... 

let's look at node 5 ... 

Fe35 → Fe35 Fe45 → Fe45 F5 → Fe35 + Fe45 

Fe3 := Ke3⋅∆ Fe4 := Ke4⋅∆ 

∆ is common (compatibility) 

F := (Ke3 + Ke4)⋅∆ F5 → Ke32 1⋅∆2 + Ke42 1⋅∆ 4 + (Ke32 2  + Ke42 2)⋅∆5 + Ke42 3⋅∆ 6, , , , , 

and if we sum Ke3 and Ke 4 

to get K (for these two  0 0 0 0

elements)  0 Ke31 1  0 0
 , 

K := Ke3 + Ke4  0 0 0 0 
K → 

 0 0 0 Ke41 1, 
 0 Ke32 1  0 Ke42 1 , , 
 0 0 0 Ke43 1 , 

0 0  
Ke31 2  0 , 

0 0  
 

Ke41 2  Ke41 3  , , 
Ke32 2  + Ke42 2  Ke42 3  , , , 

Ke43 2  Ke43 3  , , 

F := K⋅∆ F5 → Ke32 1⋅∆2 + Ke42 1⋅∆ 4 + (Ke32 2  + Ke42 2)⋅∆5 + Ke42 3⋅∆ 6, , , , , 
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same as above... CONCLUSION 

K - the structure stiffness matrix is determined by the sum of element stiffness matrices in structure coordinates 
(expanded to include all nodes) 

i.e. ... 

i = 1 ..... number of nodes (forces, n per node) 
n_elements 

) 
j = 1 ..... number of nodes (displacements, n per node) 

, Ki j  = ∑ (Keie i j,
ie = 1 (Keie)

i j  
= n x n matrix linear elastically connecting force at element 

,	 node i to displacement node j where 
n = number of dof per node 

reference Zienkiewicz expresses the importance of this relationship ... 

" .... general assembly process can be found to be the common and fundamental feature
of ALL finite element calculations and should be understood ..." 
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