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General Method for Deriving an Element Stiffness Matrix 

step I: select suitable displacement function 

beam likely to be polynomial with one unknown coefficient for each (of four) degrees of freedom 

v x  ⋅ v1  say ... 
( )  = C1 + x C2 + x2⋅C3 + x3⋅C4 

dof = δ =  
v'1  in matrix notation: 


 
C1  

 v'2   C3  
( )  := H x 

 v2  
C :=  

C2  ( )  := ( 1 x x2 x3 ) v x  ( )⋅C 5.3.6 
 
 C4  

v x  ⋅ v x  ⋅ ⋅( )  → C1 + x C2 + x2⋅C3 + x3⋅C4	
d ( )  → C2 + 2 x⋅C3 + 3 x2⋅C4
dx 

v x v( )   
( )  → 



 C1 + x C2 + x2⋅C3 + x3⋅C4 
δ 0 

 C1  
( )  → 


 C1 + L C2 + L2⋅C3 + L3⋅C4 ⋅ ⋅ 

δ x( )  := 

 
d v x  

δ x ( )  →  δ L 

 dx 
( )  

  C2 + 2 x⋅C3 + 3 x2⋅C4   C2  
 

C2 + 2 L⋅C3 + 3 L2⋅C4 ⋅ ⋅ ⋅ ⋅ 

in matrix form: 
 C1  

for manipulation 

 
( )  = 



 1 x x2 x3 

⋅ 
C2  δ_over_C xδ x ( )  := 


 1 x x

2 x3  

 0 1 2x 3x
2 
 
 C3  

 
0 1 2x 3x2  

5.3.7 

 C4  
step II: relate general displacements within element to its nodal displacement 

δ_over_C 0  1 0 0 0  ( )  → 


 1 L L2 L3  

( )  → 

 
0 1 0 0 

δ_over_C L 

 0 1 2 L  3 L2 ⋅ ⋅ 

in single matrix form: 
 
v1  

 v1_p  define A such that δ_nodes = A⋅C
δ_nodes = 

 v2  
 
 v2_p   1 0 0 0   1 0 0 0    

form by stacking 
( )  , δ_over_C( )) A → 


 
0 1 0  0 1 0 

node 1 with node 2 A := stack(δ_over_C 0 L 

 1 L L2 L

0

3 


 

A = 
 1 L L2 L

0

3 


 

 ⋅ ⋅ ⋅ 0 1 2 L  3 L2   0 1 L 3 L2  


 L
4 0 0 0 


 

δ_nodes = A⋅C => C := A− 1

⋅δ_nodes A− 1 
→ 

1 
⋅ 

0 L4	 0 0  5.3.8b 
⋅L4 


−3⋅L2 −2⋅L3 3 L2 −L3 

 

 ⋅ 2 L  L2 −2⋅L L2  
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δ
v x  ( )⋅C ( )  → ( 1 x x2 x3 ) − 1 5.3.9a

( )  := H x( )  := H x v x ( )⋅A ⋅δ_nodes 

v x  ⋅ ⋅ ⋅ ⋅( )   L
3 
− 3 x2⋅L + 2 x3 L2 − 2 x⋅L + x2 2 −3⋅L + 2 x  2 −L + x  

δ_nodes 
simplify → 


 L3 

x⋅ 
L2 

−x ⋅ 
L3 

x ⋅ 
L2  

shape function defined ( )  := H x( )⋅A− 1 with ξ = x => x := ξ⋅L 
L 

( )  → ( 1 − 3⋅ξ
2 
+ 2⋅ξ

3 
ξ⋅L − 2⋅ξ

2
⋅L + ξ

3
⋅L 3⋅ξ

2 
− 2⋅ξ

3 
−ξ
2
⋅L + ξ

3
⋅L ) 5.3.9b although text has mix of ξ and x 

Step III: express the internal deformation in terms of the nodal displacement 
area resets x, redefines C, H and v 

our problem is one of solid mechanics ; plane elasticity 
deformation is strain: du/dx, 
bending curvature d2u/dx2. v_2pr = d2u/dx2. 

v x  ⋅( )  → C1 + x C2 + x2⋅C3 + x3⋅C4 d2
2v x  ⋅ ⋅( )  → 2 C3 + 6 x⋅C4 v_2pr(x) := ( 0 0  2 6⋅x)⋅C 

dx 

− 1 − 1v_2pr(x) := ( 0 0  2 6⋅x)⋅A ⋅δ_nodes B x  ( )  := B x( ) := ( 0 0  2 6⋅x)⋅A v_2pr x ( )⋅δ_nodes 

( )  → 
 −6 + 12⋅ 

x −4 
+ 6⋅ 

x 6 
− 12⋅ 

x −2 
+ 6⋅ 

x  5.3.10 

 L
2 L3 L L2 L2 L3 L L2  

step IV: express the internal force in terms of the nodal displacement 

the "internal force" is the bending moment and 

as with internal deformation, 

( )  = E⋅I⋅ d
2 
( )  = E I⋅v_2pr x
this is a problem in bending so the relationship is M x  

dx2
v x  ⋅ ( ) 


( )  := B xwe just developed v_2pr x ( )⋅δ_nodes 

copy here for use elsewhere: 
( )  := 

 −6 + 12⋅ 
x −4 

+ 6⋅ 
x 6 

− 12⋅ 
x −2 

+ 6⋅ 
x  

 L
2 L3 L L2 L2 L3 L L2  

v_2pr x( )  → 

 
−6 

+ 12⋅ 
x ⋅δ_nodes 

 − 

L
4 
+ 6⋅ 

x ⋅δ_nodes 
 6 − 12⋅ 

x ⋅δ_nodes  
− 

L
2 
+ 6⋅ 

L

x
2 


⋅δ_nodes  
  L

2 L3   L2   L
2 L3    

define: 

E I⋅
( )  := E⋅I⋅v_2pr( )  bb := M x  

⋅(− ⋅ ⋅ ⋅(− ⋅
M x  x 

3 
( )  

simplify → [ −6⋅L + 12⋅x 2 2⋅L + 3 x)⋅L 6 L  − 12⋅x 2 L  + 3 x)⋅L ]
L bb⋅δ_nodes 

5.3.12a 
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since M(x) is linear, we can calculate M(x) at the nodes (N.B. M is the internal moment) 
define S 

 M 0 

 

( )   = S⋅δ_nodes 5.3.12b

 ( )   

M 0
 M 0  ⋅( )   

( )  
→ (−6⋅L −4⋅L2 6 L  −2⋅L2 )

 bb⋅δ_nodes 
 bb⋅δ_nodes S_over_bb = 

 

( )   ( )  
→ ( 6 L  2 L2 −6⋅L 4 L2 )⋅ ⋅ ⋅

 bb⋅δ_nodes  bb⋅δ_nodes 

substituting bb = E*I/L^3 note that this is similar to M1 and M2 with sign reversal in top element 

E I  (−6⋅L −4⋅L2 6 L  −2⋅L2 )⋅ ⋅ 
S = 

⋅ ⋅ ⋅L3 
 ( 6 L  2 L2 −6⋅L 4 L2 )  

step V: obtain the element stiffness matrix ke by relating nodal forces to nodal 
displacements 

we will do this by the principle of virtual work:  v1_star  actual nodal forces are: 
assume an arbitrary virtual nodal displacement: 


 
v1'_star δ_star := 
 v2_star   

f1  
  v2'_star  f :=  

M1  
external virtual work is force * virtual deflection: Wext := δ_starT⋅f  f2  

  M2  
Wext → v1_star⋅f1 + v1'_star⋅M1 + v2_star⋅f2 + v2'_star⋅M2 

⌠ L 

internal work = work done in imposing curvature on the beam: Wint :=  v_2pr_star x ( )  dx( )T⋅M x  
for an arbitrary virtual curvature v''_star(x) ⌡0 

M x( ) = internal_moment 

using transpose as v''_star(x) is a scalar but will involve 4 x 1 vectors to multiply the scalar M(x) with vector 

components later.

if arbitrary virtual curvature v''_star(x) is imposed indirectly by virtual nodal displacement

v''_star(x) is related to the δ_star by B(x)


( )  := B xv_2pr x ( )⋅δ_nodes from above 

v_2pr_star x ( )⋅δ_star δ_star is understood to be nodal
( )  := B x

and ... v_2pr_star x( )T = ( ( )⋅δ_star)T = δ_starT⋅ ( )T 

( )  = E⋅I⋅ 2v x  ⋅ ( )  v_2pr x ( )⋅δ_nodes M xnow using M x 	 d2 ( )  = E I⋅v_2pr x ( )  := B x ( )  = E⋅I⋅ ( )⋅δ_nodes 
dx 

⌠ L ⌠ L 

( )T⋅M xWint =  v_2pr_star x ( )  dx =  δ_starT⋅ ( )T⋅E⋅I⋅ ( )⋅δ_nodes dx 
⌡0 ⌡0 
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taking the constants outside the integral and equating internal to external work the constants have to come 
out of the correct side to maintain matrix math 

⌠L 

Wext = δ_starT⋅f = Wint = δ_starT⋅E⋅I  ( )T⋅ ( ) dx⋅δ_nodes cancelling δ_star => 
⌡0 

⌠L 

f = E⋅I  ( )T⋅ ( ) dx⋅δ_nodes = ke⋅δ_nodes what we came for 
ke = E I⋅ 

L 

( )T⋅ ( ) dx 
⌠⌡0 ⋅ 
⌡0 

 −6 + 12⋅ 
x   

 L2 L3 
 

( )  → 
 −6 + 12⋅ 

L

x
3 

− 

L
4 
+ 6⋅ 

L

x
2 L

6
2 
− 12⋅ 

L

x
3 

− 

L
2 
+ 6⋅ 

x  
 −4 x
 + 6⋅   L

2 L2 

 L L2  

⌠L( )T → 
 6 − 12⋅ 

x 
 

all we need is  ( )T⋅ ( ) dx 
 L2 L3 

⌡0 
  (it won't compute symbolicly so I wrote it out in 
 −2 

+ 6⋅ 
x  the collapsed area) 

  
L L2  

result;  12 6 −12 6   12 6 −12 6  
copied from 

 L3 L2 L3 L2  

 L3 L2 L3 L2 rhs 

 6 4 −6 2   6 4 −6 2      
⌠ L ⌠ L 

⋅ ⋅ ( )T⋅ ( ) dx = 

 
L2 L L2 L 

 ke = E I⋅ ( )T⋅ ( ) dx = E I⋅

 
L2 L L2 L 


⌡0  −12 −6 12 −6  ⌡0  −12 −6 12 −6  

 L3 L2 L3 L2   L3 L2 L3 L2  
    
 6 2 −6 4   6 2 −6 4  

 L
2 L L2 L 

  L
2 L L2 L 

  

so ... 

⋅ ⋅ fy1   
12 6 L  −12 6 L    v1  

  
⋅ ⋅ ⋅ ⋅ M1  E I   6 L  4 L2 −6⋅L 2 L2  θ 1  we now have f = ke⋅δ = ⋅ ⋅  fy2  L3 −12 −6⋅L 12 −6⋅L   v2  

⋅ ⋅ ⋅ M2   6 L  2 L2 −6⋅L 4 L2  θ 2  
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