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Chapter 20 

Motivation 

Although mobile robots operating in flat, indoor environments can often perform quite well 
without any suspension, in uneven terrain, a well-designed suspension can be critical. 

An actual robot suspension and its simplified model are shown in Figure 20.1. The rear and front 
springs with spring constants k1 and k2 serve to decouple the rest of the robot chassis from the 
wheels, allowing the chassis and any attached instrumentation to “float” relatively unperturbed 
while the wheels remain free to follow the terrain and maintain traction. The rear and front 
dampers with damping coefficients c1 and c2 (shown here inside the springs) dissipate energy to 
prevent excessive chassis displacements (e.g., from excitation of a resonant mode) and oscillations. 
Note that in our “half-robot” model, k1 accounts for the combined stiffness of both rear wheels, 
and k2 accounts for the combined stiffness of both front wheels. Similarly, c1 and c2 account for 
the combined damping coefficients of both rear wheels and both front wheels, respectively. 

We are particularly concerned with the possibility of either the front or rear wheels losing contact 
with the ground, the consequences of which — loss of control and a potentially harsh landing — 
we wish to avoid. 

To aid in our understanding of robot suspensions and, in particular, to understand the condi­
tions resulting in loss of contact, we wish to develop a simulation based on the simple model of 
Figure 20.1(b). Specifically, we wish to simulate the transient (time) response of the robot with 
suspension traveling at some constant velocity v over a surface with profile H(x), the height of the 
ground as a function of x, and to check if loss of contact occurs. To do so, we must integrate the 
differential equations of motion for the system. 

First, we determine the motion at the rear (subscript 1) and front (subscript 2) wheels in order 
to calculate the normal forces N1 and N2. Because we assume constant velocity v, we can determine 
the position in x of the center of mass at any time t (we assume X(t = 0) = 0) as 

X = vt . (20.1) 

Given the current state Y , Ẏ , θ (the inclination of the chassis), and θ̇, we can then calculate the 
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(a) Actual robot suspension. (b) Robot suspension model. 

Figure 20.1: Mobile robot suspension 

positions and velocities in both x and y at the rear and front wheels (assuming θ is small) as 

X1 = X − L1, (Ẋ1 = v) , 

X2 = X + L2, (Ẋ2 = v) , 

Y1 = Y − L1θ , 
(20.2)

˙ ˙ ˙Y1 = Y − L1θ , 

Y2 = Y + L2θ , 

˙ ˙ ˙Y2 = Y + L2θ , 

where L1 and L2 are the distances to the system’s center of mass from the rear and front wheels. 
(Recall ˙ refers to time derivative.) Note that we define Y = 0 as the height of the robot’s center 
of mass with both wheels in contact with flat ground and both springs at their unstretched and 
uncompressed lengths, i.e., when N1 = N2 = 0. Next, we determine the heights of the ground at 
the rear and front contact points as 

h1 = H(X1) , 
(20.3) 

h2 = H(X2) . 

Similarly, the rates of change of the ground height at the rear and front are given by 

dh1 d˙= h1 = v H(X1) ,
dt dx 

(20.4) 
dh2 d˙= h2 = v H(X2) . 
dt dx 

dXNote that we must multiply the spatial derivatives dHdx by v = dt to find the temporal derivatives. 
While the wheels are in contact with the ground we can determine the normal forces at the rear 

and front from the constitutive equations for the springs and dampers as 

N1 = k1(h1 − Y1) + c1(ḣ1 − Ẏ1) , 
(20.5) 

N2 = k2(h2 − Y2) + c2(ḣ2 − Ẏ2) . 
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If either N1 or N2 is calculated from Equations (20.5) to be less than or equal to zero, we can 
determine that the respective wheel has lost contact with the ground and stop the simulation, 
concluding loss of contact, i.e., failure. 

Finally, we can determine the rates of change of the state from the linearized (cos θ ≈ 1, 
sin θ ≈ θ) equations of motion for the robot, given by Newton-Euler as 

¨ ˙X = 0, X = v, X(0) = 0 , 
N1 + N2

Y ̈ = −g + , Ẏ (0) = Ẏ0, Y (0) = Y0 , (20.6)m 
N2L2 − N1L1¨ θ = , θ̇(0) = θ̇0, θ(0) = θ0 ,

Izz 

where m is the mass of the robot, and Izz is the moment of inertia of the robot about an axis 
parallel to the Z axis passing through the robot’s center of mass. 

In this unit we shall discuss the numerical procedures by which to integrate systems of ordinary 
differential equations such as (20.6). This integration can then permit us to determine loss of 
contact and hence failure. 
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Chapter 21 

Initial Value Problems 

21.1 Scalar First-Order Linear ODEs 

21.1.1 Model Problem 

Let us consider a canonical initial value problem (IVP), 

du 
= λu + f(t), 0 < t < tf ,

dt 

u(0) = u0 . 

The objective is to find u over all time t ∈ ]0, tf ] that satisfies the ordinary differential equation 
(ODE) and the initial condition. This problem belongs to the class of initial value problems (IVP) 
since we supplement the equation with condition(s) only at the initial time. The ODE is first order 
because the highest derivative that appears in the equation is the first-order derivative; because it 
is first order, only one initial condition is required to define a unique solution. The ODE is linear 
because the expression is linear with respect to u and its derivative du/dt; note that f does not have 
to be a linear function of t for the ODE to be linear. Finally, the equation is scalar since we have 
only a single unknown, u(t) ∈ R. The coefficient λ ∈ R controls the behavior of the ODE; λ < 0 
results in a stable (i.e. decaying) behavior, whereas λ > 0 results in an unstable (i.e. growing) 
behavior. 

We can motivate this model problem (with λ < 0) physically with a simple heat transfer 
situation. We consider a body at initial temperature u0 > 0 which is then “dunked” or “immersed” 
into a fluid flow — forced or natural convection — of ambient temperature (away from the body) 
zero. (More physically, we may view u0 as the temperature elevation above some non-zero ambient 
temperature.) We model the heat transfer from the body to the fluid by a heat transfer coefficient, 
h. We also permit heat generation within the body, q̇(t), due (say) to Joule heating or radiation. 
If we now assume that the Biot number — the product of h and the body “diameter” in the 
numerator, thermal conductivity of the body in the denominator — is small, the temperature of 
the body will be roughly uniform in space. In this case, the temperature of the body as a function 
of time, u(t), will be governed by our ordinary differential equation (ODE) initial value problem 
(IVP), with λ = −h Area/ρc Vol and f(t) = q̇(t)/ρc Vol, where ρ and c are the body density and 
specific heat, respectively, and Area and Vol are the body surface area and volume, respectively. 
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In fact, it is possible to express the solution to our model problem in closed form (as a con­
volution). Our interest in the model problem is thus not because we require a numerical solution 
procedure for this particular simple problem. Rather, as we shall see, our model problem will 
provide a foundation on which to construct and understand numerical procedures for much more 
difficult problems — which do not admit closed-form solution. 

21.1.2 Analytical Solution 

Before we pursue numerical methods for solving the IVP, let us study the analytical solution for 
a few cases which provide insight into the solution and also suggest test cases for our numerical 
approaches. 

Homogeneous Equation 

The first case considered is the homogeneous case, i.e., f(t) = 0. Without loss of generality, let us 
set u0 = 1. Thus, we consider 

du 
= λu, 0 < t < tf ,

dt 

u(0) = 1 . 

We find the analytical solution by following the standard procedure for obtaining the homogeneous 
solution, i.e., substitute u = αeβt to obtain 

(LHS) = 
du 

= 
d 
(αeβt) = αβet ,

dt dt

(RHS) = λαeβt . 

Equating the LHS and RHS, we obtain β = λ. The solution is of the form u(t) = αeλt . The 
coefficient α is specified by the initial condition, i.e. 

u(t = 0) = α = 1 ; 

thus, the coefficient is α = 1. The solution to the homogeneous ODE is 

u(t) = e λt . 

Note that solution starts from 1 (per the initial condition) and decays to zero for λ < 0. The decay 
rate is controlled by the time constant 1/|λ| — the larger the λ, the faster the decay. The solution 
for a few different values of λ are shown in Figure 21.1. 

We note that for λ > 0 the solution grows exponentially in time: the system is unstable. (In 
actual fact, in most physical situations, at some point additional terms — for example, nonlinear 
effects not included in our simple model — would become important and ensure saturation in 
some steady state.) In the remainder of this chapter unless specifically indicated otherwise we shall 
assume that λ < 0. 

Constant Forcing 

Next, we consider a constant forcing case with u0 = 0 and f(t) = 1, i.e. 
du 

= λu + 1 ,
dt 

u0 = 0 . 
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Figure 21.1: Solutions to the homogeneous equation. 

We have already found the homogeneous solution to the ODE. We now find the particular solution. 
Because the forcing term is constant, we consider a particular solution of the form up(t) = γ. 
Substitution of up yields 

1 
0 = λγ + 1 ⇒ γ = − . 

λ 
Thus, our solution is of the form 

u(t) = − 
1
+ αeλt . 

λ 
Enforcing the initial condition, 

1 1 
u(t = 0) = − + α = 0 ⇒ α = . 

λ λ 
Thus, our solution is given by   1 λt − 1u(t) = e . 

λ

The solutions for a few different values of λ are shown in Figure 21.2. For λ < 0, after the transient 
which decays on the time scale 1/|λ|, the solution settles to the steady state value of −1/λ. 

Sinusoidal Forcing 

Let us consider a final case with u0 = 0 and a sinusoidal forcing, f(t) = cos(ωt), i.e. 

du 
= λu + cos(ωt) ,

dt 

u0 = 0 . 

Because the forcing term is sinusoidal with the frequency ω, the particular solution is of the form 
up(t) = γ sin(ωt) + δ cos(ωt). Substitution of the particular solution to the ODE yields 

dup
(LHS) = = ω(γ cos(ωt) − δ sin(ωt)) ,

dt 

(RHS) = λ(γ sin(ωt) + δ cos(ωt)) + cos(ωt) . 
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Figure 21.2: Solutions to the ODE with unit constant forcing.  

Equating the LHS and RHS and collecting like coefficients we obtain  

ωγ = λδ + 1 , 

−ωδ = λγ . 

The solution to this linear system is given by γ = ω/(ω2 + λ2) and δ = −λ/(ω2 + λ2). Thus, the 
solution is of the form 

u(t) = 
ω 

sin(ωt) − 
λ 

cos(ωt) + αeλt . 
ω2 + λ2 ω2 + λ2 

Imposing the boundary condition, we obtain 

λ λ 
u(t = 0) = − + α = 0 ⇒ α = . 

ω2 + λ2 ω2 + λ2 

Thus, the solution to the IVP with the sinusoidal forcing is 

ω λ λt u(t) = sin(ωt) − cos(ωt) − e . 
ω2 + λ2 ω2 + λ2 

We note that for low frequency there is no phase shift; however, for high frequency there is a π/2 
phase shift. 

The solutions for λ = −1, ω = 1 and λ = −20, ω = 1 are shown in Figure 21.3. The steady 
state behavior is controlled by the sinusoidal forcing function and has the time scale of 1/ω. On 
the other hand, the initial transient is controlled by λ and has the time scale of 1/|λ|. In particular, 
note that for |λ| » ω, the solution exhibits very different time scales in the transient and in the 
steady (periodic) state. This is an example of a stiff equation (we shall see another example at the 
conclusion of this unit). Solving a stiff equation introduces additional computational challenges for 
numerical schemes, as we will see shortly. 

21.1.3 A First Numerical Method: Euler Backward (Implicit) 

In this section, we consider the Euler Backward integrator for solving initial value problems. We 
first introduce the time stepping scheme and then discuss a number of properties that characterize 
the scheme. 
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Discretization 

In order to solve an IVP numerically, we first discretize the time domain ]0, tf ] into J segments. 
The discrete time points are given by 

jt = jΔt, j = 0, 1, . . . , J = tf /Δt , 

where Δt is the time step. For simplicity, we assume in this chapter that the time step is constant 
throughout the time integration. 

The Euler Backward method is obtained by applying the first-order Backward Difference For­
mula (see Unit I) to the time derivative. Namely, we approximate the time derivative by 

j−1du ũj − ũ≈ ,
dt Δt 

where ũj = ũ(tj ) is the approximation to u(tj ) and Δt = tj − tj−1 is the time step. Substituting 
the approximation into the differential equation, we obtain a difference equation 

j−1ũj − ũ
= λũj + f(tj ), j = 1, . . . , J , 

Δt 

ũ0 = u0 , 

jfor ũ , j = 0, . . . , J . Note the scheme is called “implicit” because time level j appears on the 
right-hand side. We can think of Euler Backward as a kind of rectangle, right integration rule — 
but now the integrand is not known a priori . 

We anticipate that the solution ũj , j = 1, . . . , J , approaches the true solution u(tj ), j = 1, . . . , J , 
as the time step gets smaller and the finite difference approximation approaches the continuous sys­
tem. In order for this convergence to the true solution to take place, the discretization must possess 
two important properties: consistency and stability. Note our analysis here is more subtle than 
the analysis in Unit I. In Unit I we looked at the error in the finite difference approximation; here, 
we are interested in the error induced by the finite difference approximation on the approximate 
solution of the ODE IVP. 
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Consistency  

Consistency is a property of a discretization that ensures that the discrete equation approximates 
the same process as the underlying ODE as the time step goes to zero. This is an important 
property, because if the scheme is not consistent with the ODE, then the scheme is modeling a 
different process and the solution would not converge to the true solution. 

Let us define the notion of consistency more formally. We first define the truncation error by 
substituting the true solution u(t) into the Euler Backward discretization, i.e. 

j u(tj ) − u(tj−1)
τ ≡ − λu(tj ) − f(tj ), j = 1, . . . , J .trunc Δt 

jNote that the truncation error, τ , measures the extent to which the exact solution to the ODE trunc

does not satisfy the difference equation. In general, the exact solution does not satisfy the difference 
j j jequation, so τ  = 0, j = 1, . . . , J , then ˜ = u(tj ),= 0. In fact, as we will see shortly, if τ utrunc trunc 

i.e., ũj is the exact solution to the ODE at the time points. 
We are particularly interested in the largest of the truncation errors, which is in a sense the 

largest discrepancy between the differential equation and the difference equation. We denote this 
using the infinity norm, 

jIτtruncI∞ = max |τ | .trunc
j=1,...,J 

A scheme is consistent with the ODE if 

IτtruncI∞ → 0 as Δt → 0 . 

The difference equation for a consistent scheme approaches the differential equation as Δt → 
0. However, this does not necessary imply that the solution to the difference equation, ũ(tj ), 
approaches the solution to the differential equation, u(tj ). 

The Euler Backward scheme is consistent. In particular       d2u  
dt2 (t) 

      → 0 as Δt → 0 . IτtruncI∞ ≤ 
Δt  

max  
2 t∈[0,tf ]

We demonstrate this result below. 

Begin Advanced Material 

Let us now analyze the consistency of the Euler Backward integration scheme. We first apply 
Taylor expansion to u(tj−1) about tj , i.e. 

u(t j−1) = u(tj ) − Δt 
du  
dt  

(t j ) −
tj 
  τ d2u  

  

(γ)dγ dτ . 
dt2 

tj−1 tj−1 

sj (u) 

This result is simple to derive. By the fundamental theorem of calculus, τ du2 du du 
(γ)dγ = (τ ) − (tj−1) . 

tj−1 dt2 dt dt 
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Integrating both sides over ]tj−1, tj [,     tj τ tj tjdu2 du du j−1)(γ)dγ dτ = (τ) dτ − (t dτ 
tj−1 tj−1 dt2 

tj−1 dt tj−1 dt 

= u(tj ) − u(tj−1) − (tj − tj−1) 
du 

(tj−1)
dt 

j−1) − Δt
du j−1) .= u(tj ) − u(t (t
dt 

Substitution of the expression to the right-hand side of the Taylor series expansion yields 
du du du 

u(tj ) − Δt (tj ) − sj (u) = u(tj ) − Δt (tj) − u(tj ) + u(tj−1) + Δt (tj−1) = u(tj−1) ,
dt dt dt 

which proves the desired result. 
Substituting the Taylor expansion into the expression for the truncation error, 

u(tj ) − u(tj−1)j j )τ = − λu(tj ) − f(ttrunc Δt   
=

1 
u(tj ) − u(tj ) − Δt

du 
(tj ) − sj (u) − λu(tj ) − f(tj )

Δt dt 

du sj (u) 
= (tj ) − λu(tj ) − f(tj )+ 
dt Δt 

=0 : by ODE 

sj (u) 
= . 

Δt 
We now bound the remainder term sj (u) as a function of Δt. Note that 

tj τ tj τd2 d2u u 
sj (u) = (γ)dγ dτ ≤ (γ) dγ dτ 

tj−1 tj−1 dt2 
tj−1 tj−1 dt2 

tj τd2u ≤ max (t) dγdτ 
t∈[tj−1,tj ] dt2 

tj−1 tj−1 

d2 Δt2u 
= max (t) , j = 1, . . . , J . 

t∈[tj−1,tj ] dt2 2 

So, the maximum truncation error is 

j 1 d2u Δt2 Δt d2u IτtruncI∞ = max |τ | ≤ max max (t) ≤ max (t) .trunc
j=1,...,J j=1,...,J Δt t∈[tj−1,tj ] dt2 2 2 t∈[0,tf ] dt2 

We see that 
Δt d2u IτtruncI∞ ≤ max (t) → 0 as Δt → 0 . 
2 t∈[0,tf ] dt2 

Thus, the Euler Backward scheme is consistent. 

End Advanced Material 
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Stability  

Stability is a property of a discretization that ensures that the error in the numerical approximation 
does not grow with time. This is an important property, because it ensures that a small truncation 
error introduced at each time step does not cause a catastrophic divergence in the solution over 
time. 

To study stability, let us consider a homogeneous IVP, 

du 
= λu , 

dt 

u(0) = 1 . 

Recall that the true solution is of the form u(t) = eλt and decays for λ < 0. Applying the Euler 
Backward scheme, we obtain 

j−1ũj − ũ j= λũ , j = 1, . . . , J , 
Δt 

u 0 = 1 . 

A scheme is said to be absolutely stable if 

|ũj | ≤ |ũj−1|, j = 1, . . . , J . 

Alternatively, we can define the amplification factor, γ, as 

|ũj |
γ ≡ . 

|ũj−1| 

Absolute stability requires that γ ≤ 1 for all j = 1, . . . , J . 
Let us now show that the Euler Backward scheme is stable for all Δt (for λ < 0). Rearranging 

the difference equation, 

j−1 jũj − ũ = λΔt ũ

ũj (1 − λΔt) = ũj−1 

|ũj | |1 − λΔt| = |ũj−1| . 

So, we have 

|ũj | 1 
γ = = . 

|ũj−1| |1 − λΔt| 

Recalling that λ < 0 (and Δt > 0), we have 

1 
γ = < 1 . 

1 − λΔt 

Thus, the Euler Backward scheme is stable for all Δt for the model problem considered. The 
scheme is said to be unconditionally stable because it is stable for all Δt. Some schemes are only 
conditionally stable, which means the scheme is stable for Δt ≤ Δtcr, where Δtcr is some critical 
time step. 
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Convergence: Dahlquist Equivalence Theorem  

Now we define the notion of convergence. A scheme is convergent if the numerical approximation 
approaches the analytical solution as the time step is reduced. Formally, this means that 

ũj ≡ ũ(tj ) → u(tj ) for fixed tj as Δt → 0 . 

Note that fixed time tj means that the time index must go to infinity (i.e., an infinite number of 
time steps are required) as Δt → 0 because tj = jΔt. Thus, convergence requires that not too 
much error is accumulated at each time step. Furthermore, the error generated at a given step 
should not grow over time. 

The relationship between consistency, stability, and convergence is summarized in the Dahlquist 
equivalence theorem. The theorem states that consistency and stability are the necessary and 
sufficient condition for a convergent scheme, i.e. 

consistency + stability ⇔ convergence . 

Thus, we only need to show that a scheme is consistent and (absolutely) stable to show that 
the scheme is convergent. In particular, the Euler Backward scheme is convergent because it is 
consistent and (absolutely) stable. 

Begin Advanced Material 

Example 21.1.1 Consistency, stability, and convergence for Euler Backward 
In this example, we will study in detail the relationship among consistency, stability, and conver­

jgence for the Euler Backward scheme. Let us denote the error in the solution by e , 

ej ≡ u(tj ) − ũ(tj ) . 

We first relate the evolution of the error to the truncation error. To begin, we recall that 

u(tj ) − u(tj−1) − λΔtu(tj ) − Δtf(tj ) = Δtτ j ,trunc 

ũ(tj ) − ũ(tj−1) − λΔtũ(tj ) − Δtf(tj ) = 0 ; 

subtracting these two equations and using the definition of the error we obtain 

ej − ej−1 − λΔtej = Δtτ j ,trunc 

or, rearranging the equation, 

(1 − λΔt)ej − ej−1 = Δtτ j .trunc 

We see that the error itself satisfies the Euler Backward difference equation with the truncation 
jerror as the source term. Clearly, if the truncation error τ is zero for all time steps (and initial trunc 

error is zero), then the error remains zero. In other words, if the truncation error is zero then the 
scheme produces the exact solution at each time step. 

However, in general, the truncation error is nonzero, and we would like to analyze its influence 
on the error. Let us multiply the equation by (1 − λΔt)j−1 to get 

(1 − λΔt)j ej − (1 − λΔt)j−1 ej−1 = (1 − λΔt)j−1Δtτ j ,trunc 
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Now, let us compute the sum for j = 1, . . . , n, for some n ≤ J ,  
n   n   n n 

(1 − λΔt)j ej − (1 − λΔt)j−1 ej−1 = (1 − λΔt)j−1Δtτ j .trunc

j=1 j=1

This is a telescopic series and all the middle terms on the left-hand side cancel. More explicitly, 

(1 − λΔt)n e n − (1 − λΔt)n−1 e n−1 = (1 − λΔt)n−1Δtτ n 
trunc 

(1 − λΔt)n−1 e n−1 − (1 − λΔt)n−2 e n−2 = (1 − λΔt)n−2Δtτ n−1 
trunc 

. . . 

(1 − λΔt)2 e 2 − (1 − λΔt)1 e 1 = (1 − λΔt)1Δtτ2 
trunc 

(1 − λΔt)1 e 1 − (1 − λΔt)0 e 0 = (1 − λΔt)0Δtτ1 
trunc 

simplifies to 
nn 

(1 − λΔt)n e n − e 0 = (1 − λΔt)j−1Δtτ j .trunc 
j=1 

0Recall that we set ũ = ũ(t0) = u(t0), so the initial error is zero (e0 = 0). Thus, we are left with 

nn 
(1 − λΔt)n e n = (1 − λΔt)j−1Δtτ j trunc 

j=1 

or, equivalently, 
nn 

e n = (1 − λΔt)j−n−1Δtτ j .trunc 
j=1 

jRecalling that IτtruncI∞ = maxj=1,...,J |τ |, we can bound the error by trunc

nn 
|e n| ≤ ΔtIτtruncI∞ (1 − λΔt)j−n−1 . 

j=1 

Recalling the amplification factor for the Euler Backward scheme, γ = 1/(1 − λΔt), the summation 
can be rewritten as 

nn 1 1 1 
(1 − λΔt)j−n−1 = + + · · · + 

(1 − λΔt)n (1 − λΔt)n−1 (1 − λΔt)
j=1 

+ γn−1 = γn + · · · + γ . 

Because the scheme is stable, the amplification factor satisfies γ ≤ 1. Thus, the sum is bounded by 
nn 
(1 − λΔt)j−n−1 = γn + γn−1 + · · · + γ ≤ nγ ≤ n . 

j=1 
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Thus, we have  

|e n| ≤ (nΔt)IτtruncI∞ = tnIτtruncI∞ . 

Furthermore, because the scheme is consistent, IτtruncI∞ → 0 as Δt → 0. Thus, 

Ie nI ≤ tnIτtruncI∞ → 0 as Δt → 0 

for fixed tn = nΔt. Note that the proof of convergence relies on stability (γ ≤ 1) and consistency 
(IτtruncI∞ → 0 as Δt → 0). 

· 

End Advanced Material 

Order of Accuracy 

The Dahlquist equivalence theorem shows that if a scheme is consistent and stable, then it is 
convergent. However, the theorem does not state how quickly the scheme converges to the true 
solution as the time step is reduced. Formally, a scheme is said to be pth-order accurate if 

j|ej | < CΔtp for a fixed t = jΔt as Δt → 0 . 

The Euler Backward scheme is first-order accurate (p = 1), because 

j Δt d2u 1Iej I ≤ tj IτtruncI∞ ≤ t max (t) ≤ CΔt
2 t∈[0,tf ] dt2 

with 

tf d2u 
C = max (t) . 

2 t∈[0,tf ] dt2 

(We use here tj ≤ tf .) 
In general, for a stable scheme, if the truncation error is pth-order accurate, then the scheme is 

pth-order accurate, i.e. 

p p jIτtruncI∞ ≤ CΔt ⇒ |ej | ≤ CΔt for a fixed t = jΔt . 

In other words, once we prove the stability of a scheme, then we just need to analyze its truncation 
error to understand its convergence rate. This requires little more work than checking for consis­
tency. It is significantly simpler than deriving the expression for the evolution of the error and 
analyzing the error behavior directly. 

Figure 21.4 shows the error convergence behavior of the Euler Backward scheme applied to the 
homogeneous ODE with λ = −4. The error is measured at t = 1. Consistent with the theory, the 
scheme converges at the rate of p = 1. 

21.1.4 An Explicit Scheme: Euler Forward 

Let us now introduce a new scheme, the Euler Forward scheme. The Euler Forward scheme is 
obtained by applying the first-order forward difference formula to the time derivative, i.e. 

j+1 − ˜jdu ũ u≈ . 
dt Δt 
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Figure 21.4: The error convergence behavior for the Euler Backward scheme applied to the homo­
geneous ODE (λ = −4). Note e(t = 1) = |u(tj ) − ũj | at tj = jΔt = 1. 

Substitution of the expression to the linear ODE yields a difference equation, 
j+1 − ˜jũ u

= λuj + f(tj ), j = 0, . . . , J − 1 ,
Δt 

ũ0 = u0 . 

To maintain the same time index as the Euler Backward scheme (i.e., the difference equation 
involves the unknowns ũj and ũj−1), let us shift the indices to obtain 

j−1ũj − ũ
= λuj−1 + f(tj−1), j = 1, . . . , J , 

Δt 

ũ0 = u0 . 

The key difference from the Euler Backward scheme is that the terms on the right-hand side are 
evaluated at tj−1 instead of at tj . Schemes for which the right-hand side does not involve time 
level j are known as “explicit” schemes. While the change may appear minor, this significantly 
modifies the stability. (It also changes the computational complexity, as we will discuss later.) We 
may view Euler Forward as a kind of “rectangle, left” integration rule. 

Let us now analyze the consistency and stability of the scheme. The proof of consistency is 
similar to that for the Euler Backward scheme. The truncation error for the scheme is 

j u(tj ) − u(tj−1)
τ = − λu(tj−1) − f(tj−1) .trunc Δt 

To analyze the convergence of the truncation error, we apply Taylor expansion to u(tj ) about tj−1 

to obtain, 

tj τdu du2 
u(tj ) = u(tj−1) + Δt (tj−1) + (γ)dγ dτ . 

dt tj−1 tj−1 dt2 

sj (u) 
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Thus, the truncation error simplifies to  

j j−1) j−1)τ =
1 

u(tj−1) + Δt
du 

(tj−1) + sj (u) − u(t − λu(tj−1) − f(ttrunc Δt dt 

du sj (u)j−1)= (tj−1) − λu(tj−1) − f(t + 
dt Δt 

=0 : by ODE 

sj (u) 
= . 

Δt 

In proving the consistency of the Euler Backward scheme, we have shown that sj (u) is bounded by 

d2 Δt2u 
sj(u) ≤ max (t) , j = 1, . . . , J . 

t∈[tj−1,tj ] dt2 2 

Thus, the maximum truncation error is bounded by 

d2u Δt IτtruncI∞ ≤ max (t) . 
t∈[0,tf ] dt2 2 

Again, the truncation error converges linearly with Δt and the scheme is consistent because 
IτtruncI∞ → 0 as Δt → 0. Because the scheme is consistent, we only need to show that it is 
stable to ensure convergence. 

To analyze the stability of the scheme, let us compute the amplification factor. Rearranging 
the difference equation for the homogeneous case, 

j−1 j−1 ũj − ũ = λΔtũ

or 
|ũj | = |1 + λΔt||ũj−1| 

which gives 
γ = |1 + λΔt| . 

Thus, absolute stability (i.e., γ ≤ 1) requires 

−1 ≤ 1 + λΔt ≤ 1 

−2 ≤ λΔt ≤ 0 . 

Noting λΔt ≤ 0 is a trivial condition for λ < 0, the condition for stability is 

2 
Δt ≤ − ≡ Δtcr . 

λ 

Note that the Euler Forward scheme is stable only for Δt ≤ 2/|λ|. Thus, the scheme is conditionally 
stable. Recalling the stability is a necessary condition for convergence, we conclude that the scheme 
converges for Δt ≤ Δtcr, but diverges (i.e., blows up) with j if Δt > Δtcr. 

Figure 21.5 shows the error convergence behavior of the Euler Forward scheme applied to the 
homogeneous ODE with λ = −4. The error is measured at t = 1. The critical time step for stability 
is Δtcr = −2/λ = 1/2. The error convergence plot shows that the error grows exponentially for 
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Figure 21.5: The error convergence behavior for the Euler Forward scheme applied to du/dt = −4u. 
Note e(t = 1) = |u(tj ) − ũj | at tj = jΔt = 1. 

Δt > 1/2. As Δt tends to zero, the numerical approximation converges to the exact solution, and 
the convergence rate (order) is p = 1 — consistent with the theory. 

We should emphasize that the instability of the Euler Forward scheme for Δt > Δtcr is not due to 
round-off errors and floating point representation (which involves “truncation,” but not truncation 
of the variety discussed in this chapter). In particular, all of our arguments for instability hold in 
infinite-precision arithmetic as well as finite-precision arithmetic. The instability derives from the 
difference equation; the instability amplifies truncation error, which is a property of the difference 
equation and differential equation. Of course, an unstable difference equation will also amplify 
round-off errors, but that is an additional consideration and not the main reason for the explosion 
in Figure 21.5. 

21.1.5 Stiff Equations: Implicit vs. Explicit 

Stiff equations are the class of equations that exhibit a wide range of time scales. For example, 
recall the linear ODE with a sinusoidal forcing, 

du 
= λt + cos(ωt) ,

dt 

with |λ| » ω. The transient response of the solution is dictated by the time constant 1/|λ|. 
However, this initial transient decays exponentially with time. The long time response is governed 
by the time constant 1/ω » 1/|λ|. 

Let us consider the case with λ = −100 and ω = 4; the time scales differ by a factor of 25. 
The result of applying the Euler Backward and Euler Forward schemes with several different time 
steps is shown in Figure 21.6. Recall that the Euler Backward scheme is stable for any time step 
for λ < 0. The numerical result confirms that the solution is bounded for all time steps considered. 
While a large time step (in particular Δt > 1/|λ|) results in an approximation which does not 
capture the initial transient, the long term behavior of the solution is still well represented. Thus, 
if the initial transient is not of interest, we can use a Δt optimized to resolve only the long term 
behavior associated with the characteristic time scale of 1/ω — in other words, Δt ∼ O(1/10), 
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Figure 21.6: Application of the Euler Backward and Euler Forward schemes to a stiff equation. 
Note e(t = 1) = |u(tj ) − ũj | at tj = jΔt = 1. 

rather than Δt ∼ O(1/|λ|). If |λ| » ω, then we significantly reduce the number of time steps (and 
thus the computational cost). 

Unlike its implicit counterpart, the Euler Forward method is only conditionally stable. In 
particular, the critical time step for this problem is Δtcr = 2/|λ| = 0.02. Thus, even if we are not 
interested in the initial transient, we cannot use a large time step because the scheme would be 
unstable. Only one of the three numerical solution (Δt = 1/64 < Δtcr) is shown in Figure 21.6(c) 
because the other two time steps (Δt = 1/16, Δt = 1/4) result in an unstable discretization and 
a useless approximation. The exponential growth of the error for Δt > Δtcr is clearly reflected in 
Figure 21.6(d). 

Stiff equations are ubiquitous in the science and engineering context; in fact, it is not uncommon 
to see scales that differ by over ten orders of magnitude. For example, the time scale associated 
with the dynamics of a passenger jet is several orders of magnitude larger than the time scale 
associated with turbulent eddies. If the dynamics of the smallest time scale is not of interest, 
then an unconditionally stable scheme that allows us to take arbitrarily large time steps may be 
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computationally advantageous. In particular, we can select the time step that is necessary to achieve 
sufficient accuracy without any time step restriction arising from the stability consideration. Put 
another way, integration of a stiff system using a conditionally stable method may place a stringent 
requirement on the time step, rendering the integration prohibitively expensive. As none of the 
explicit schemes are unconditionally stable, implicit schemes are often preferred for stiff equations. 

We might conclude from the above that explicit schemes serve very little purpose. In fact, this 
is not the case, because the story is a bit more complicated. In particular, we note that for Euler 
Backward, at every time step, we must effect a division operation, 1/(1 − (λΔt)), whereas for Euler 
Forward we must effect a multiplication, 1 + (λΔt). When we consider real problems of interest — 
systems, often large systems, of many and often nonlinear ODEs — these scalar algebraic operations 
of division for implicit schemes and multiplication for explicit schemes will translate into matrix 
inversion (more precisely, solution of matrix equations) and matrix multiplication, respectively. 
In general, and as we shall see in Unit V, matrix inversion is much more costly than matrix 
multiplication. 

Hence the total cost equation is more nuanced. An implicit scheme will typically enjoy a larger 
time step and hence fewer time steps — but require more work for each time step (matrix solution). 
In contrast, an explicit scheme may require a much smaller time step and hence many more time 
steps — but will entail much less work for each time step. For stiff equations in which the Δt for 
accuracy is much, much larger than the Δtcr required for stability (of explicit schemes), typically 
implicit wins. On the other hand, for non-stiff equations, in which the Δt for accuracy might be on 
the same order as Δtcr required for stability (of explicit schemes), explicit can often win: in such 
cases we would in any event (for reasons of accuracy) choose a Δt ≈ Δtcr; hence, since an explicit 
scheme will be stable for this Δt, we might as well choose an explicit scheme to minimize the work 
per time step. 

Begin Advanced Material 

21.1.6 Unstable Equations 

End Advanced Material 

21.1.7 Absolute Stability and Stability Diagrams 

We have learned that different integration schemes exhibit different stability characteristics. In 
particular, implicit methods tend to be more stable than explicit methods. To characterize the 
stability of different numerical integrators, let us introduce absolute stability diagrams. These 
diagrams allow us to quickly analyze whether an integration scheme will be stable for a given 
system. 

Euler Backward 

Let us construct the stability diagram for the Euler Backward scheme. We start with the homoge­
neous equation 

dz 
= λz . 

dt 

So far, we have only considered a real λ; now we allow λ to be a general complex number. (Later  
λ will represent an eigenvalue of a system, which in general will be a complex number.) The Euler  
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Figure 21.7: The absolute stability diagram for the Euler Backward scheme.  

Backward discretization of the equation is  

j−1z̃j − z̃ j j−1 = λz̃ ⇒ z̃j = (1 − (λΔt))−1 z̃ . 
Δt 

Recall that we defined the absolute stability as the region in which the amplification factor γ ≡ 
|z̃j |/|z̃j−1| is less than or equal to unity. This requires 

|z̃j | 1 
γ = = ≤ 1 . 

|z̃j−1| 1 − (λΔt) 

We wish to find the values of (λΔt) for which the numerical solution exhibits a stable behavior 
(i.e., γ ≤ 1). A simple approach to achieve this is to solve for the stability boundary by setting the 
amplification factor to 1 = |eiθ|, i.e. 

1iθ e = . 
1 − (λΔt) 

Solving for (λΔt), we obtain 

(λΔt) = 1 − e −iθ . 

Thus, the stability boundary for the Euler Backward scheme is a circle of unit radius (the “one” 
multiplying eiθ) centered at 1 (the one directly after the = sign). 

To deduce on which side of the boundary the scheme is stable, we can check the amplification 
factor evaluated at a point not on the circle. For example, if we pick λΔt = −1, we observe that 
γ = 1/2 ≤ 1. Thus, the scheme is stable outside of the unit circle. Figure 21.7 shows the stability 
diagram for the Euler Backward scheme. The scheme is unstable in the shaded region; it is stable 
in the unshaded region; it is neutrally stable, |z̃j | = |z̃j−1|, on the unit circle. The unshaded region 
(γ < 1) and the boundary of the shaded and unshaded regions (γ = 1) represent the absolute 
stability region; the entire picture is denoted the absolute stability diagram. 

To gain understanding of the stability diagram, let us consider the behavior of the Euler Back­
ward scheme for a few select values of λΔt. First, we consider a stable homogeneous equation, with 
λ = −1 < 0. We consider three different values of λΔt, −0.5, −1.7, and −2.2. Figure 21.8(a) shows 
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Figure 21.8: The behavior of the Euler Backward scheme for selected values of (λΔt). 

the three points on the stability diagram that correspond to these choices of λΔt. All three points 
lie in the unshaded region, which is a stable region. Figure 21.8(b) shows that all three numerical 
solutions decay with time as expected. While the smaller Δt results in a smaller error, all schemes 
are stable and converge to the same steady state solution. 

Begin Advanced Material 

Next, we consider an unstable homogeneous equation, with λ = 1 > 0. We again consider 
three different values of λΔt, 0.5, 1.7, and 2.2. Figure 21.8(c) shows that two of these points lie 
in the unstable region, while λΔt = 2.2 lies in the stable region. Figure 21.8(d) confirms that the 
solutions for λΔt = 0.5 and 1.7 grow with time, while λΔt = 2.2 results in a decaying solution. 
The true solution, of course, grows exponentially with time. Thus, if the time step is too large 
(specifically λΔt > 2), then the Euler Backward scheme can produce a decaying solution even if 
the true solution grows with time — which is undesirable; nevertheless, as Δt → 0, we obtain 
the correct behavior. In general, the interior of the absolute stability region should not include 
λΔt = 0. (In fact λΔt = 0 should be on the stability boundary.) 
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Figure 21.9: The absolute stability diagram for the Euler Forward scheme. The white area corre­
sponds to stability (the absolute stability region) and the gray area to instability. 

End Advanced Material 

Euler Forward 

Let us now analyze the absolute stability characteristics of the Euler Forward scheme. Similar 
to the Euler Backward scheme, we start with the homogeneous equation. The Euler Forward 
discretization of the equation yields 

j−1z̃j − z̃ j−1 j−1 = λz̃ ⇒ z̃j = (1 + (λΔt))z̃ . 
Δt 

The stability boundary, on which the amplification factor is unity, is given by 
−iθ − 1 .γ = |1 + (λΔt)| = 1 ⇒ (λΔt) = e 

The stability boundary is a circle of unit radius centered at −1. Substitution of, for example, 
λΔt = −1/2, yields γ(λΔt = −1/2) = 1/2, so the amplification is less than unity inside the circle. 
The stability diagram for the Euler Forward scheme is shown in Figure 21.9. 

As in the Euler Backward case, let us pick a few select values of λΔt and study the behavior of the 
Euler Forward scheme. The stability diagram and solution behavior for a stable ODE (λ = −1 < 0) 
are shown in Figure 21.10(a) and 21.10(b), respectively. The cases with λΔt = −0.5 and −1.7 lie 
in the stable region of the stability diagram, while λΔt = −2.2 lies in the unstable region. Due to 
instability, the numerical solution for λΔt = −2.2 diverges exponentially with time, even though 
the true solution decays with time. The solution for λΔt = −1.7 shows some oscillation, but the 
magnitude of the oscillation decays with time, agreeing with the stability diagram. (For an unstable 
ODE (λ = 1 > 0), Figure 21.10(c) shows that all time steps considered lie in the unstable region 
of the stability diagram. Figure 21.10(d) confirms that all these choices of Δt produce a growing 
solution.) 

21.1.8 Multistep Schemes 

We have so far considered two schemes: the Euler Backward scheme and the Euler Forward scheme. 
j j−1These two schemes compute the state ũ from the previous state ũ and the source function 
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Figure 21.10: The behavior of the Euler Forward scheme for selected values of λΔt. 
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evaluated at tj or tj−1 . The two schemes are special cases of multistep schemes, where the solution 
at the current time ũj is approximated from the previous solutions. In general, for an ODE of the 
form 

du 
= g(u, t) ,

dt 

a K-step multistep scheme takes the form 

K Kn n 
αkũ

j−k = Δt βkg
j−k , j = 1, . . . , J , 

k=0 k=0 

jũ = u0 , 

j−k j−kwhere g = g(ũ , tj−k). Note that the linear ODE we have been considering results from the 
choice g(u, t) = λu + f(t). A K-step multistep scheme requires solutions (and derivatives) at K 
previous time steps. Without loss of generality, we choose α0 = 1. A scheme is uniquely defined 
by choosing 2K + 1 coefficients, αk, k = 1, . . . ,K, and βk, k = 0, . . . ,K. 

Multistep schemes can be categorized into implicit and explicit schemes. If we choose β0 = 0, 
then ũj does not appear on the right-hand side, resulting in an explicit scheme. As discussed before, 
explicit schemes are only conditionally stable, but are computationally less expensive per step. If 
we choose β0 = 0, then ũj appears on the right-hand side, resulting in an implicit scheme. Implicit 
schemes tend to be more stable, but are more computationally expensive per step, especially for a 
system of nonlinear ODEs. 

Let us recast the Euler Backward and Euler Forward schemes in the multistep method frame­
work. 

Example 21.1.2 Euler Backward as a multistep scheme 
The Euler Backward scheme is a 1-step method with the choices 

α1 = −1, β0 = 1, and β1 = 0 . 

This results in 

ũj − ũj−1 = Δtgj , j = 1, . . . , J . 

· 

Example 21.1.3 Euler Forward as a multistep scheme 
The Euler Forward scheme is a 1-step method with the choices 

α1 = −1, β0 = 0, and β1 = 1 . 

This results in 

ũj − ũj−1 = Δtgj−1 , j = 1, . . . , J . 

· 

Now we consider three families of multistep schemes: Adams-Bashforth, Adams-Moulton, and 
Backward Differentiation Formulas. 

327  



  

  

 

 

Adams-Bashforth Schemes 

Adams-Bashforth schemes are explicit multistep time integration schemes (β0 = 0). Furthermore, 
we restrict ourselves to 

α1 = −1 and αk = 0, k = 2, . . . ,K . 

The resulting family of the schemes takes the form 

K
j j−1 j−k ũ = ũ + βkg . 

k=1 

Now we must choose βk, k = 1, . . .K, to define a scheme. To choose the appropriate values of βk, 
we first note that the true solution u(tj ) and u(tj−1) are related by 

tj tj 

u(tj) = u(tj−1) + 
du 

(τ)dτ = u(tj−1) + g(u(τ), τ)dτ . (21.1) 
tj−1 dt tj−1 

Then, we approximate the integrand g(u(τ), τ), τ ∈ (tj−1, tj ), using the values gj−k , k = 1, . . . ,K. 

n 

th−Specifically, we construct a (K 1) -degree polynomial (τ ) using the K data points, i.e. p

Kn 
j−k p(τ) = φk(τ)g , 

k=1 

where φk(τ ), k = 1, . . . ,K, are the Lagrange interpolation polynomials defined by the points 
tj−k , k = 1, . . . ,K. Recalling the polynomial interpolation theory from Unit I, we note that the 
(K − 1)th-degree polynomial interpolant is Kth-order accurate for g(u(τ), τ) sufficiently smooth, 
i.e. 

p(τ) = g(u(τ), τ) + O(ΔtK ) . 

(Note in fact here we consider “extrapolation” of our interpolant.) Thus, we expect the order of 
approximation to improve as we incorporate more points given sufficient smoothness. Substitution 
of the polynomial approximation of the derivative to Eq. (21.1) yields 

nnK K

u(tj ) ≈ u(tj−1) + φk(τ)g
j−kdτ = u(tj−1) + φk(τ )dτ gj−k . 

tj−1 tj−1 
k=1 k=1 

To simplify the integral, let us consider the change of variable τ = tj − (tj − tj−1)τ̂ = tj − Δtτ̂ . 
The change of variable yields 

tj tj 

nK
u(tj ) ≈ u(tj−1) + Δt ˆ τ)dˆ ,φk(ˆ τ gj−k 

0k=1 

where the φ̂k are the Lagrange polynomials associated with the interpolation points τ̂ = 1, 2, . . . ,K. 
We recognize that the approximation fits the Adams-Bashforth form if we choose 

1 
ˆβk = φk(τ̂)dτ̂ . 

0 

1 

Let us develop a few examples of Adams-Bashforth schemes.  
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Example 21.1.4 1-step Adams-Bashforth (Euler Forward) 
The 1-step Adams-Bashforth scheme requires evaluation of β1. The Lagrange polynomial for this 
case is a constant polynomial, φ̂1(τ̂) = 1. Thus, we obtain 

1 1 
ˆβ1 = φ1(τ̂)dτ̂ = 1dτ̂ = 1 . 

0 0 

Thus, the scheme is 

j j−1 ũ = ũj−1 +Δtg , 

which is the Euler Forward scheme, first-order accurate. 

· 

Example 21.1.5 2-step Adams-Bashforth 
The 2-step Adams-Bashforth scheme requires specification of β1 and β2. The Lagrange interpolation 
polynomials for this case are linear polynomials 

ˆ ˆφ1(τ̂ ) = −τ̂ + 2 and φ2(τ̂ ) = τ̂ − 1 . 

ˆ ˆIt is easy to verify that these are the Lagrange polynomials because φ1(1) = φ2(2) = 1 and 
φ̂1(2) = φ̂2(1) = 0. Integrating the polynomials 

1 1 3 
β1 = φ1(τ̂)dτ̂ = (−τ̂ + 2)dτ̂ = ,

20 0 

1 1 1 
β2 = φ2(τ̂)dτ̂ = (τ̂ − 1)dτ̂ = − . 

20 0 

The resulting scheme is 

j j−1 − j−2 ũ = ũj−1 +Δt 
3 
g

1 
g . 

2 2

This scheme is second-order accurate. 

· 

Adams-Moulton Schemes 

Adams-Moulton schemes are implicit multistep time integration schemes (β0  0). Similar to 
Adams-Bashforth schemes, we restrict ourselves to 

α1 = −1 and αk = 0, k = 2, . . . ,K . 

The Adams-Moulton family of the schemes takes the form 

Kn 
j j−1 j−k ũ = ũ + βkg . 

k=0 

We must choose βk, k = 1, . . . ,K to define a scheme. The choice of βk follows exactly the same 
procedure as that for Adams-Bashforth. Namely, we consider the expansion of the form Eq. (21.1) 

329  

∫ ∫

∫ ∫
∫ ∫

( )

6=



 

 

  

  
  

and approximate g(u(τ), τ) by a polynomial. This time, we have K + 1 points, thus we construct 
a Kth-degree polynomial 

Kn 
j−k p(τ) = φk(τ)g , 

k=0 

where φk(τ), k = 0, . . . ,K, are the Lagrange interpolation polynomials defined by the points tj−k , 
k = 0, . . . ,K. Note that these polynomials are different from those for the Adams-Bashforth 
schemes due to the inclusion of tj as one of the interpolation points. (Hence here we consider true 
interpolation, not extrapolation.) Moreover, the interpolation is now (K + 1)th-order accurate. 

Using the same change of variable as for Adams-Bashforth schemes, τ = tj − Δtτ̂ , we arrive at 
a similar expression, 

K 1n 
u(tj ) ≈ u(tj−1) + Δt ˆ τ)dˆ ,φk(ˆ τgj−k 

0k=0 

for the Adams-Moulton schemes; here the φ̂k are the Kth-degree Lagrange polynomials defined by 
the points τ̂ = 0, 1, . . . ,K. Thus, the βk are given by 

1 
ˆβk = φk(τ̂)dτ̂ . 

0 

Let us develop a few examples of Adams-Moulton schemes. 

Example 21.1.6 0-step Adams-Moulton (Euler Backward) 
The 0-step Adams-Moulton scheme requires just one coefficient, β0. The “Lagrange” polynomial 
is 0th degree, i.e. a constant function φ̂0(τ̂) = 1, and the integration of the constant function over 
the unit interval yields 

1 1 
ˆβ0 = φ0(τ̂)dτ̂ = 1dτ̂ = 1. 

0 0 

Thus, the 0-step Adams-Moulton scheme is given by 

ũj = ũj−1 +Δtgj , 

which in fact is the Euler Backward scheme. Recall that the Euler Backward scheme is first-order 
accurate. 

· 

Example 21.1.7 1-step Adams-Moulton (Crank-Nicolson) 
The 1-step Adams-Moulton scheme requires determination of two coefficients, β0 and β1. The 
Lagrange polynomials for this case are linear polynomials 

ˆ ˆφ0(τ̂) = −τ + 1 and φ1(τ̂) = τ . 

Integrating the polynomials, 
1 1 1ˆβ0 = φ0(τ̂)dτ̂ = (−τ + 1)dτ̂ = ,

20 0 

1 1 1ˆβ1 = τ)dˆ = τdˆ = .φ1(ˆ τ ˆ τ 
20 0 
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The choice of βk yields the Crank-Nicolson scheme 

j j j−1 ũ = ũj−1 +Δt 
1 
g +

1 
g . 

2 2

The Crank-Nicolson scheme is second-order accurate. We can view Crank-Nicolson as a kind of 
“trapezoidal” rule. 

· 

Example 21.1.8 2-step Adams-Moulton 
The 2-step Adams-Moulton scheme requires three coefficients, β0, β1, and β2. The Lagrange 
polynomials for this case are the quadratic polynomials 

φ̂0(τ̂) = 
1
(τ̂ − 1)(τ̂ − 2) = 

1
(τ̂2 − 3τ̂ + 2) ,

2 2

φ̂1(τ̂) = −τ̂(τ̂ − 2) = −τ̂2 + 2τ̂ , 

φ̂2(τ̂) = 
1 
τ̂(τ̂ − 1) = 

1 
τ̂2 − τ̂ . 

2 2 

Integrating the polynomials, 

1 1 
ˆβ0 = φ0(τ̂)dτ̂ = 

1
(τ̂2 − 3τ̂ + 2)τ̂ =

5 
2 120 0 

1 1 
β1 = φ̂1(τ̂)dτ̂ = (−τ̂2 + 2τ̂ )dτ̂ = 

2 
,

30 0 

1 1 
β2 = φ̂2(τ̂)dτ̂ = 

1 
τ̂2 − τ̂ dτ̂ = − 

1 
. 

2 120 0 

Thus, the 2-step Adams-Moulton scheme is given by 

5 2 1j j j−1 − j−2 ũ = ũj−1 +Δt g + g g . 
12 3 12

This AM2 scheme is third-order accurate. 

· 

Convergence of Multistep Schemes: Consistency and Stability 

Let us now introduce techniques for analyzing the convergence of a multistep scheme. Due to the 
Dahlquist equivalence theorem, we only need to show that the scheme is consistent and stable. 

To show that the scheme is consistent, we need to compute the truncation error. Recalling that 
the local truncation error is obtained by substituting the exact solution to the difference equation 
(normalized such that ũj has the coefficient of 1) and dividing by Δt, we have for any multistep 
schemes ⎡ ⎤ 

K Kn n 
j j−k)⎦ − j−kτ =

1 ⎣u(tj) + αk u(t βk g(t , u(tj−k)) .trunc Δt 
k=1 k=0 
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For simplicity we specialize our analysis to the Adams-Bashforth family, such that 

Kn 
j j−1)=

1 
u(tj ) − u(ttrunc −  βk g(t

j−k , u(tj−k)) .τ 
Δt  

k=1 

We recall that the coefficients βk were selected to match the extrapolation from polynomial fitting. 
Backtracking the derivation, we simplify the sum as follows 

K K 
j−k ˆ j−k βk g(t , u(tj−k)) = τ )dˆ , u(tj−k))φk(ˆ τ g(t

0k=1 k=1 

nn 1 

K

= 
Δt tj−1 

k=1 

n tj 

j−k1 
φk(τ)dτ g(t , u(tj−k)) 

tj1 
= 

Δt tj−1 

⎤ 
Kn 

⎡ ⎣ φk(τ) g(tj−k , u(tj−k))⎦ dτ 
k=1 

tj1 
= p(τ)dτ . 

n 

Δt tj−1 

We recall that p(τ) is a (K − 1)th
th-order accurate interpolation with the error O(ΔtK ). Thus, 

K
j j−1)=

1 
u(tj ) − u(ttruncτ −  βk g(t

j−k , u(tj−k))
Δt  

k=1 

tj tj1 1 1 
= u(tj ) − u(tj−1) − g(τ, u(τ ))dτ + O(ΔtK )dτ 

Δt Δt tj−1 Δt jj−1 

tj 

=
1 

u(tj ) − u(tj−1) − g(τ, u(τ ))dτ + O(ΔtK )
Δt tj−1 

= O(ΔtK ) . 

Note that the term in the bracket vanishes from g = du/dt and the fundamental theorem of calculus. 
The truncation error of the scheme is O(ΔtK ). In particular, since K > 0, τtrunc → 0 as Δt → 0 
and the Adams-Bashforth schemes are consistent. Thus, if the schemes are stable, they would 
converge at ΔtK . 

The analysis of stability relies on a solution technique for difference equations. We first restrict 
ourselves to linear equation of the form g(t, u) = λu. By rearranging the form of difference equation 
for the multistep methods, we obtain 

nK
(αk − (λΔt) βk) ũj−k = 0, j = 1, . . . , J . 

k=0 
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The solution to the difference equation is governed by the initial condition and the K roots of the 
polynomial 

Kn 
q(x) = (αk − (λΔt) βk)x K−k . 

k=0 

In particular, for any initial condition, the solution will exhibit a stable behavior if all roots rk, 
k = 1, . . . ,K, have magnitude less than or equal to unity. Thus, the absolute stability condition 
for multistep schemes is 

(λΔt) such that |rK | ≤ 1, k = 1, . . . ,K , 

where rk, k = 1, . . . ,K are the roots of q. 

Example 21.1.9 Stability of the 2-step Adams-Bashforth scheme 
Recall that the 2-step Adams-Bashforth results from the choice 

3 1 
α0 = 1, α1 = −1, α2 = 0, β0 = 0, β1 = , and β2 = − . 

2 2 
The stability of the scheme is governed by the roots of the polynomial 

2n 3 12−k 2 q(x) = (αk − (λΔt) βk)x = x + −1 − (λΔt) x + (λΔt) = 0 . 
2 2

k=0 

The roots of the polynomial are given by ⎡  ⎤ 
21 3 3 

r1,2 = ⎣1 + (λΔt) ± 1 + (λΔt) − 2(λΔt) ⎦ . 
2 2 2

We now look for (λΔt) such that |r1| ≤ 1 and |r2| ≤ 1. 
It is a simple matter to determine if a particular λΔt is inside, on the boundary of, or outside 

the absolute stability region. For example, for λΔt = −1 we obtain r1 = −1, r2 = 1/2 and hence — 
since |r1| = 1 — λΔt = −1 is in fact on the boundary of the absolute stability diagram. Similarly, 
it is simple to confirm that λΔt = −1/2 yields both r1 and r2 of modulus strictly less than 1, 
and hence λΔt = −1/2 is inside the absolute stability region. We can thus in principle check each 
point λΔt (or enlist more sophisticated solution procedures) in order to construct the full absolute 
stability diagram. 

We shall primarily be concerned with the use of the stability diagram rather than the construc­
tion of the stability diagram — which for most schemes of interest are already derived and well 
documented. We present in Figure 21.11(b) the absolute stability diagram for the 2-step Adams-
Bashforth scheme. For comparison we show in Figure 21.11(a) the absolute stability diagram for 
Euler Forward, which is the 1-step Adams-Bashforth scheme. Note that the stability region of the 
Adams-Bashforth schemes are quite small; in fact the stability region decreases further for higher 
order Adams-Bashforth schemes. Thus, the method is only well suited for non-stiff equations. 

· 

Example 21.1.10 Stability of the Crank-Nicolson scheme 
Let us analyze the absolute stability of the Crank-Nicolson scheme. Recall that the stability of a 
multistep scheme is governed by the roots of the polynomial 

Kn 
q(x) = (αk − λΔt βk) x K−k . 

k=0 
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Figure 21.11: The stability diagrams for Adams-Bashforth methods. 

For the Crank-Nicolson scheme, we have α0 = 1, α1 = −1, β0 = 1/2, and β1 = 1/2. Thus, the 
polynomial is 

1 1 
q(x) = 1 − 

2
(λΔt) x + −1 − 

2
(λΔt) . 

The root of the polynomial is 

2 + (λΔt) 
r = . 

2 − (λΔt) 

To solve for the stability boundary, let us set |r| = 1 = |eiθ| and solve for (λΔt), i.e. 

2 + (λΔt) iθ 2(eiθ − 1) i2 sin(θ) 
= e ⇒ (λΔt) = = . 

2 − (λΔt) eiθ + 1 1 + cos(θ) 

Thus, as θ varies from 0 to π/2, λΔt varies from 0 to i∞ along the imaginary axis. Similarly, as 
θ varies from 0 to −π/2, λΔt varies from 0 to −i∞ along the imaginary axis. Thus, the stability 
boundary is the imaginary axis. The absolute stability region is the entire left-hand (complex) 
plane. 

The stability diagrams for the 1- and 2-step Adams-Moulton methods are shown in Figure 21.11. 
The Crank-Nicolson scheme shows the ideal stability diagram; it is stable for all stable ODEs (λ ≤ 0) 
and unstable for all unstable ODEs (λ > 0) regardless of the time step selection. (Furthermore, 
for neutrally stable ODEs, λ = 0, Crank-Nicolson is neutrally stable — γ, the amplification factor, 
is unity.) The selection of time step is dictated by the accuracy requirement rather than stability 
concerns.1 Despite being an implicit scheme, AM2 is not stable for all λΔt in the left-hand plane; 
for example, along the real axis, the time step is limited to −λΔt ≤ 6. While the stability 
region is larger than, for example, the Euler Forward scheme, the stability region of AM2 is rather 
disappointing considering the additional computational cost associated with each step of an implicit 
scheme. 

· 

1However, the Crank-Nicolson method does exhibit undesirable oscillations for λΔt → − (real) ∞, and the lack 
of any dissipation on the imaginary axis can also sometimes cause difficulties. Nobody’s perfect. 
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Figure 21.12: The stability diagrams for 2-step Adams-Moulton methods. 

Backward Differentiation Formulas 

The Backward Differentiation Formulas are implicit multistep schemes that are well suited for stiff 
problems. Unlike the Adams-Bashforth and Adams-Moulton schemes, we restrict ourselves to 

βk = 0, k = 1, . . . ,K . 

Thus, the Backward Differential Formulas are of the form 

nK
ũj + αkũ

j−k = Δt β0g
j . 

k=1 

Our task is to find the coefficients αk, k = 1, . . . ,K, and β0. We first construct a Kth-degree 
j−kinterpolating polynomial using ũ , k = 0, . . . ,K, to approximate u(t), i.e. 

nK
j−k u(t) ≈ φk(t)ũ , 

k=0 

where φk(t), k = 0, . . . ,K, are the Lagrange interpolation polynomials defined at the points tj−k , 
k = 0, . . . ,K; i.e., the same polynomials used to develop the Adams-Moulton schemes. Differenti­
ating the function and evaluating it at t = tj , we obtain 

nK
dt dttj tjk=0 

Again, we apply the change of variable of the form t = tj − Δtτ̂ , so that 

du  dφk j−k ũ≈  .  

n 

⎛ 

nK K

tj tjdt dτ̂ dt Δt dτ̂
k=0 0 k=0 0 

j = g(u(tj ), tj ) = du/dt|tj , we set 

d ̂φk d ̂φkdu  dτ̂ 1 j−k j−k≈  = − ũ ũ .  

Recalling g ⎞  nnnK K K

k=1 k=0 0 k=0 0 
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dφ̂k dφ̂k1  
ũ j +  j−k ≈ Δtβ0 

j−k ũ j−k . ⎝−  ⎠ = −β0αkũ ũ 
Δt dτ̂  dτ̂  

∣∣∣∣ ∣∣∣∣
∣∣∣∣

∣∣∣∣∣
∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣

∣∣∣∣∣



     
     

     
     

  
     
     
     

j−kMatching the coefficients for ũ , k = 0, . . . ,K, we obtain 

dφ̂k
1 = −β0 

dτ̂
0 

d ̂φk
αk = −β0 , k = 1, . . . ,K . 

dτ̂
0 

Let us develop a few Backward Differentiation Formulas. 

Example 21.1.11 1-step Backward Differentiation Formula (Euler Backward) 
The 1-step Backward Differentiation Formula requires specification of β0 and α1. As in the 1-step 
Adams-Moulton scheme, the Lagrange polynomials for this case are 

ˆ ˆφ0(τ̂) = −τ + 1 and φ1(τ̂) = τ . 

Differentiating and evaluating at τ̂ = 0 ⎛ ⎞−1 

β0 = − ⎝ dφ̂0 ⎠ = −(−1)−1 = 1 ,
dτ̂

0 

dφ̂1
α1 = −β0 = −1 . 

dτ̂
0 

The resulting scheme is 

ũj − ũj−1 = Δtgj , 

which is the Euler Backward scheme. Again. 
· 

Example 21.1.12 2-step Backward Differentiation Formula 
The 2-step Backward Differentiation Formula requires specification of β0, α1, and α2. The Lagrange 
polynomials for this case are 

φ̂0(τ̂) = 
1
(τ̂2 − 3τ̂ + 2) ,

2

φ̂1(τ̂) = −τ̂2 + 2τ̂ , 

φ̂2(τ̂) = 
1 

τ̂2 − τ̂ . 
2 

Differentiation yields ⎛ ⎞−1 ⎝ dφ̂0 ⎠ 2 
β0 = − = ,

dτ̂ 3 
0 

dφ̂1 2 4 
α1 = −β0 = − · 2 = − ,

dτ̂ 3 3 
0 

dφ̂2 2 1 1 
α2 = −β0 = − · − = . 

dτ̂ 3 2 3 
0 
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Figure 21.13: The absolute stability diagrams for Backward Differentiation Formulas. 

The resulting scheme is 

4 1 2j−1 j−2 jũj − ũ + ũ = Δtg . 
3 3 3 

The 2-step Backward Differentiation Formula (BDF2) is unconditionally stable and is second-order 
accurate. 

· 

Example 21.1.13 3-step Backward Differentiation Formula 
Following the same procedure, we can develop the 3-step Backward Differentiation Formula (BDF3). 
The scheme is given by 

18 9 2 6j−1 j−2 − j−3 jũj − ũ + ũ ũ = Δtg . 
11 11 11 11 

The scheme is unconditionally stable and is third-order accurate. 
· 

The stability diagrams for the 1-, 2-, and 3-step Backward Differentiation Formulas are shown 
in Figure 21.13. The BDF1 and BDF2 schemes are A-stable (i.e., the stable region includes the 
entire left-hand plane). Unfortunately, BDF3 is not A-stable; in fact the region of instability in the 
left-hand plane increases for the higher-order BDFs. However, for stiff engineering systems whose 
eigenvalues are clustered along the real axis, the BDF methods are attractive choices. 

21.1.9 Multistage Schemes: Runge-Kutta 

Another family of important and powerful integration schemes are multistage schemes, the most 
famous of which are the Runge-Kutta schemes. While a detailed analysis of the Runge-Kutta 
schemes is quite involved, we briefly introduce the methods due to their prevalence in the scientific 
and engineering context. 

Unlike multistep schemes, multistage schemes only require the solution at the previous time 
j−1 jstep ũ to approximate the new state ũ at time tj . To develop an update formula, we first 

observe that 
tj tj 

u(tj) = ũ(tj−1) + 
du 

(τ)dτ = ũ(tj−1) + g(u(τ), τ)dτ . 
tj−1 dt tj−1 
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Clearly, we cannot use the formula directly to approximate u(tj ) because we do not know g(u(τ ), τ), 
τ ∈ ]tj−1, tj [ . To derive the Adams schemes, we replaced the unknown function g with its polynomial 
approximation based on g evaluated at K previous time steps. In the case of Runge-Kutta, we 
directly apply numerical quadrature to the integral to obtain 

Kn 
j−1 j−1 u(tj ) ≈ u(tj−1) + Δt bk g u(t + ckΔt), t + ckΔt , 

k=1 

where the bk are the quadrature weights and the tj + ckΔt are the quadrature points. We need to 
make further approximations to define a scheme, because we do not know the values of u at the K 
stages, u(tj + ckΔt), k = 1, . . . ,K. Our approach is to replace the K stage values u(tj−1 + ckΔt) 
by approximations vk and then to form the K stage derivatives as 

j−1Gk = g vk, t + ckΔt . 

It remains to specify the approximation scheme. 
For an explicit Runge-Kutta scheme, we construct the kth-stage approximation as a linear 

combination of the previous stage derivatives and ũj−1, i.e. 

vk = ũj−1 +Δt 
� 
Ak1G1 + Ak2G2 + · · · + Ak,k−1Gk−1 

� 
. 

Because this kth-stage estimate only depends on the previous stage derivatives, we can compute 
the stage values in sequence, 

j−1v1 = ũ (⇒ G1) , 

v2 = ũj−1 +ΔtA21G1 (⇒ G2) , 

v3 = ũj−1 +ΔtA31G1 +ΔtA32G2 (⇒ G3) , 

. . .  K−1 vK = ũj−1 +Δt k=1 AKkGk (⇒ GK ) . 

Once the stage values are available, we estimate the integral by 

Kn 
ũj = ũj−1 +Δt bk Gk , 

k=1 

and proceed to the next time step. 
Note that a Runge-Kutta scheme is uniquely defined by the choice of the vector b for quadrature 

weight, the vector c for quadrature points, and the matrix A for the stage reconstruction. The 
coefficients are often tabulated in a Butcher table, which is a collection of the coefficients of the 
form 

c A 
. 

bT 

For explicit Runge-Kutta methods, we require Aij = 0, i ≤ j. Let us now introduce two popular 
explicit Runge-Kutta schemes. 
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Example 21.1.14 Two-stage Runge-Kutta 
A popular two-stage Runge-Kutta method (RK2) has the Butcher table 

0 
1 
2 

1 
2 . 

0 1 

This results in the following update formula 

j−1 j−1) ,v1 = ũ , G1 = g(v1, t

1j−1 1 j−1 v2 = ũ + 2 ΔtG1, G2 = g v2, t + Δt ,
2 

ũj = ũj +ΔtG2 . 

The two-stage Runge-Kutta scheme is conditionally stable and is second-order accurate. We might 
view this scheme as a kind of midpoint rule. 

· 

Example 21.1.15 Four-stage Runge-Kutta 
A popular four-stage Runge-Kutta method (RK4) — and perhaps the most popular of all Runge-
Kutta methods — has the Butcher table of the form 

0 
1 
2 
1 
2 

1 

1 
2 

0 1 
2 . 

0 0 1 
1 
6 

1 
3 

1 
3 

1 
6 

This results in the following update formula 

j−1 j−1) ,v1 = ũ , G1 = g(v1, t

1j−1 1 j−1 v2 = ũ + 2 ΔtG1, G2 = g v2, t + Δt ,
2 

1j−1 1 j−1 v3 = ũ + 2 ΔtG2, G3 = g v3, t + Δt ,
2 

v4 = ũj−1 +ΔtG3, G4 = g v4, t
j−1 +Δt , 

1 1 1 1 
ũj = ũj−1 +Δt G1 + G2 + G3 + G4 . 

6 3 3 6 

The four-stage Runge-Kutta scheme is conditionally stable and is fourth-order accurate. 

· 
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The accuracy analysis of the Runge-Kutta schemes is quite involved and is omitted here. There 
are various choices of coefficients that achieve pth-order accuracy using p stages for p ≤ 4. It 
is also worth noting that even though we can achieve fourth-order accuracy using a four-stage 
Runge-Kutta method, six stages are necessary to achieve fifth-order accuracy. 

Explicit Runge-Kutta methods required that a stage value is a linear combination of the previous 
stage derivatives. In other words, the A matrix is lower triangular with zeros on the diagonal. This 
made the calculation of the state values straightforward, as we could compute the stage values in 
sequence. If we remove this restriction, we arrive at family of implicit Runge-Kutta methods (IRK). 
The stage value updates for implicit Runge-Kutta schemes are fully coupled, i.e. 

Kn 
vk = ũj−1 +Δt AkiGi, k = 1, . . . ,K . 

i=1 

In other words, the matrix A is full in general. Like other implicit methods, implicit Runge-Kutta 
schemes tend to be more stable than their explicit counterparts (although also more expensive per 
time step). Moreover, for all K, there is a unique IRK method that achieves 2K order of accuracy. 
Let us introduce one such scheme. 

Example 21.1.16 Two-stage Gauss-Legendre Implicit Runge-Kutta 
The two-stage Gauss-Legendre Runge-Kutta method2 (GL-IRK2) is described by the Butcher table 

√ 
1 3−2 6 

√ 
1 3+2 6 

√ 
1 1 3−4 4 6 
√ 

1 3 1+ .4 6 4 

1 1 
2 2 

To compute the update we must first solve a system of equations to obtain the stage values v1 and 
v2 

j−1 v1 = ũ + A11ΔtG1 + A12ΔG2 , 

j−1 v2 = ũ + A21ΔtG1 + A12ΔG2 , 

or 

j−1 j−1 j−1 v1 = ũ + A11Δtg(v1, t + c1Δt) + A12Δtg(v2, t + c2Δt) , 

j−1 j−1 j−1 v2 = ũ + A21Δtg(v1, t + c1Δt) + A22Δtg(v2, t + c2Δt) , 

where the coefficients A and c are provided by the Butcher table. Once the stage values are 
computed, we compute ũj according to 

j j−1 j−1 ũ = ũj−1 +Δt b1 g(v1, t + c1Δt) + b2 g(v2, t + c2Δt) , 

where the coefficients b are given by the Butcher table. 
The two-stage Gauss-Legendre Runge-Kutta scheme is A-stable and is fourth-order accurate. 

While the method is computationally expensive and difficult to implement, the A-stability and 
fourth-order accuracy are attractive features for certain applications. 

2The naming is due to the use of the Gauss quadrature points, which are the roots of Legendre polynomials on 
the unit interval. 

340  



Re(λ∆t)

Im
(λ

∆
t)

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Re(λ∆t)

Im
(λ

∆
t)

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Re(λ∆t)

Im
(λ

∆
t)

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

(a) RK2 (b) RK4 (c) Gauss-Legendre IRK2 

Figure 21.14: The absolute stability diagrams for the Runge-Kutta family of schemes. 

· 

There is a family of implicit Runge-Kutta methods called diagonally implicit Runge-Kutta 
(DIRK). These methods have an A matrix that is lower triangular with the same coefficients 
in each diagonal element. This family of methods inherits the stability advantage of IRK schemes 
while being computationally more efficient than other IRK schemes for nonlinear systems, as we 
can incrementally update the stages. 

The stability diagrams for the three Runge-Kutta schemes presented are shown in Figure 21.14. 
The two explicit Runge-Kutta methods, RK2 and RK4, are not A-stable. The time step along the 
real axis is limited to −λΔt ≤ 2 for RK2 and −λΔt � 2.8 for RK4. However, the stability region 
for the explicit Runge-Kutta schemes are considerably larger than the Adams-Bashforth family of 
explicit schemes. While the explicit Runge-Kutta methods are not suited for very stiff systems, 
they can be used for moderately stiff systems. The implicit method, GL-IRK2, is A-stable; it also 
correctly exhibits growing behavior for unstable systems. 

Figure 21.15 shows the error behavior of the Runge-Kutta schemes applied to du/dt = −4u. 
The higher accuracy of the Runge-Kutta schemes compared to the Euler Forward scheme is evident 
from the solution. The error convergence plot confirms the theoretical convergence rates for these 
methods. 

21.2 Scalar Second-Order Linear ODEs 

21.2.1 Model Problem 

Let us consider a canonical second-order ODE, 

d2u du 
m + c + ku = f(t), 0 < t < tf ,
dt2 dt 

u(0) = u0 , 

du 
(0) = v0 . 

dt 

The ODE is second order, because the highest derivative that appears in the equation is the second  
derivative. Because the equation is second order, we now require two initial conditions: one for  
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Figure 21.15: The error convergence behavior for the Runge-Kutta family of schemes applied to 
du/dt = −4u. Here e(t = 1) = |u(tj ) − ũj | for tj = jΔt = 1. 

displacement, and one for velocity. It is a linear ODE because the equation is linear with respect 
to u and its derivatives. 

A typical spring-mass-damper system is governed by this second-order ODE, where u is the 
displacement, m is the mass, c is the damping constant, k is the spring constant, and f is the 
external forcing. This system is of course a damped oscillator, as we now illustrate through the 
classical solutions. 

21.2.2 Analytical Solution 

Homogeneous Equation: Undamped 

Let us consider the undamped homogeneous case, with c = 0 and f = 0, 

d2u 
m + ku = 0, 0 < t < tf ,
dt2 

u(0) = u0 , 

du 
(0) = v0 . 

dt 

To solve the ODE, we assume solutions of the form eλt, which yields 

(mλ2 + k) e λt = 0 . 

This implies that mλ2 + k = 0, or that λ must be a root of the characteristic polynomial  
p(λ) = mλ2 + k = 0 ⇒ λ1,2 = ±i k

. 
m  

Let us define the natural frequency , ωn ≡ k/m. The roots of the characteristic polynomials are 
then λ1,2 = ±iωn. The solution to the ODE is thus of the form 

u(t) = αeiωnt + βe−iωnt . 
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Figure 21.16: Response of undamped spring-mass systems.  

Rearranging the equation,  

α + β iωnt α − β iωnt − e −iωnt)u(t) = αeiωnt + βe−iωnt = (e + e −iωnt) + (e 
2 2 

= (α + β) cos(ωnt) + i(α − β) sin(ωnt) . 

Without loss of generality, let us redefine the coefficients by c1 = α + β and c2 = i(α − β). The 
general form of the solution is thus 

u(t) = c1 cos(ωnt) + c2 sin(ωnt) . 

The coefficients c1 and c2 are specified by the initial condition. In particular, 

u(t = 0) = c1 = u0 ⇒ c1 = u0 , 
du v0

(t = 0) = c2ωn = v0 ⇒ c2 = . 
dt ωn 

Thus, the solution to the undamped homogeneous equation is 

v0 
u(t) = u0 cos(ωnt) + sin(ωnt) ,

ωn 

which represents a (non-decaying) sinusoid. 

Example 21.2.1 Undamped spring-mass system 
Let us consider two spring-mass systems with the natural frequencies ωn = 1.0 and 2.0. The 
responses of the systems to initial displacement of u(t = 0) = 1.0 are shown in Figure 21.16. As 
the systems are undamped, the amplitudes of the oscillations do not decay with time. 

· 
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Homogeneous Equation: Underdamped  

Let us now consider the homogeneous case (f = 0) but with finite (but weak) damping  

d2u du 
m + c + ku = 0, 0 < t < tf ,
dt2 dt 

u(0) = u0 , 

du 
(0) = v0 . 

dt 

To solve the ODE, we again assume behavior of the form u = eλt . Now the roots of the characteristic 
polynomial are given by 

2 c c k 
p(λ) = mλ2 + cλ + k = 0 ⇒ λ1,2 = − ± − . 

2m 2m m 

Let us rewrite the roots as 

2 2c c k k c k c
λ1,2 = − ± − = − √ ± − 1 . 

2m 2m m m 2 mk m 4mk 

For convenience, let us define the damping ratio as 
c c 

ζ = √ = . 
2 mk 2mωn 

Together with the definition of natural frequency, ωn = k/m, we can simplify the roots to 

λ1,2 = −ζωn ± ωn ζ2 − 1 . 

The underdamped case is characterized by the condition 

ζ2 − 1 < 0 , 

i.e., ζ < 1. 
In this case, the roots can be conveniently expressed as 

λ1,2 = −ζωn ± iωn 1 − ζ2 = −ζωn ± iωd , 

where ωd ≡ ωn 1 − ζ2 is the damped frequency. The solution to the underdamped homogeneous 
system is 

+ βe−ζωnt−iωdt u(t) = αe−ζωnt+iωdt . 

Using a similar technique as that used for the undamped case, we can simplify the expression to 
−ζωnt u(t) = e c1 cos(ωdt) + c2 sin(ωdt) . 

Substitution of the initial condition yields 

v0 + ζωnu0−ζωnt u(t) = e u0 cos(ωdt) + sin(ωdt) . 
ωd 

Thus, the solution is sinusoidal with exponentially decaying amplitude. The decay rate is set by 
the damping ratio, ζ. If ζ « 1, then the oscillation decays slowly — over many periods. 
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Figure 21.17: Response of underdamped spring-mass-damper systems.  

Example 21.2.2 Underdamped spring-mass-damper system 
Let us consider two underdamped spring-mass-damper systems with 

System 1: ωn = 1.0 and ζ = 0.1  
System 2: ωn = 1.0 and ζ = 0.5 .  

The responses of the systems to initial displacement of u(t = 0) = 1.0 are shown in Figure 21.17. 
Unlike the undamped systems considered in Example 21.2.1, the amplitude of the oscillations decays 
with time; the oscillation of System 2 with a higher damping coefficient decays quicker than that 
of System 1. 

· 

Homogeneous Equation: Overdamped 

In the underdamped case, we assumed ζ < 1. If ζ > 1, then we have an overdamped system. In 
this case, we write the roots as 

λ1,2 = −ωn ζ ± ζ2 − 1 , 

both of which are real. The solution is then given by 
λ1t λ2t u(t) = c1e + c2e . 

The substitution of the initial conditions yields 

λ2u0 − v0 −λ2u0 + v0 
c1 = and c2 = . 

λ2 − λ1 λ2 − λ1 

The solution is a linear combination of two exponentials that decay with time constants of 1/|λ1|
and 1/|λ2|, respectively. Because |λ1| > |λ2|, |λ2| dictates the long time decay behavior of the 
system. For ζ → ∞, λ2 behaves as −ωn/(2ζ) = −k/c. 

Example 21.2.3 Overdamped spring-mass-damper system 
Let us consider two overdamped spring-mass-damper systems with 

System 1: ωn = 1.0 and ζ = 1.0  
System 2: ωn = 1.0 and ζ = 5.0 .  
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Figure 21.18: Response of overdamped spring-mass-damper systems. 

The responses of the systems to initial displacement of u(t = 0) = 1.0 are shown in Figure 21.17. 
As the systems are overdamped, they exhibit non-oscillatory behaviors. Note that the oscillation 
of System 2 with a higher damping coefficient decays more slowly than that of System 1. This is 
in contrast to the underdamped cases considered in Example 21.2.2, in which the oscillation of the 
system with a higher damping coefficient decays more quickly. 

· 

Sinusoidal Forcing 

Let us consider a sinusoidal forcing of the second-order system. In particular, we consider a system 
of the form 

d2u du 
m + c + ku = A cos(ωt) . 
dt2 dt 

In terms of the natural frequency and the damping ratio previously defined, we can rewrite the 
system as 

d2u du A 
+ 2ζωn + ω2 u = cos(ωt) .ndt2 dt m 

A particular solution is of the form 

up(t) = α cos(ωt) + β sin(ωt) . 

Substituting the assumed form of particular solution into the governing equation, we obtain 

d2up dup A 
0 = + 2ζωn + ωn

2 up − cos(ωt)
dt2 dt m 

= − αω2 cos(ωt) − βω2 sin(ωt) + 2ζωn(−αω sin(ωt) + βω cos(ωt)) 

+ ω2 (α cos(ωt) + β sin(ωt)) − A cos(ωt) .n
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Figure 21.19: The variation in the amplification factor for the sinusoidally forced system. 

We next match terms in sin and cos to obtain 

α(ω2 A − ω2) + β(2ζωωn) = ,n m 

β(ω2 − ω2) − α(2ζωωn) = 0 ,n 

and solve for the coefficients, 
2 2(ω2 − ω2) A 1 − r A 1 − r Anα = = = ,

(ω2 − ω2)2 + (2ζωωn)2 m (1 − r2)2 + (2ζr)2 mω2 (1 − r2)2 + (2ζr)2 kn n 

(2ζωωn) A 2ζr A 2ζr A 
β = = = ,

(ω2 − ω2)2 + (2ζωωn)2 m (1 − r2)2 + (2ζr)2 mω2 (1 − r2)2 + (2ζr)2 kn n 

where r ≡ ω/ωn is the ratio of the forced to natural frequency. 
Using a trigonometric identity, we may compute the amplitude of the particular solution as 

(1 − r2)2 + (2ζr)2 A 1 A 
Ap = α2 + β2 = = . 

(1 − r2)2 + (2ζr)2 k (1 − r2)2 + (2ζr)2 k 

Note that the magnitude of the amplification varies with the frequency ratio, r, and the damping 
ratio, ζ. This variation in the amplification factor is plotted in Figure 21.19. For a given ζ, the 
amplification factor is maximized at r = 1 (i.e., ωn = ω), and the peak amplification factor is 
1/(2ζ). This increase in the magnitude of oscillation near the natural frequency of the system is 
known as resonance. The natural frequency is clearly crucial in understanding the forced response 
of the system, in particular for lightly damped systems.3 

21.3 System of Two First-Order Linear ODEs 

It is possible to directly numerically tackle the second-order system of Section 21.2 for example 
using Newmark integration schemes. However, we shall focus on a state-space approach which is 
much more general and in fact is the basis for numerical solution of systems of ODEs of virtually 
any kind. 

3 Note that for ζ = 0 (which in fact is not realizable physically in any event), the amplitude is only infinite as 
t → ∞; in particular, in resonant conditions, the amplitude will grow linearly in time. 
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21.3.1 State Space Representation of Scalar Second-Order ODEs 

In this section, we develop a state space representation of the canonical second-order ODE. Recall 
that the ODE of interest is of the form 

d2u du 1 
+ 2ζωn + ω2 u = f(t), 0 < t < tf ,ndt2 dt m 

u(0) = u0 , 

du 
(0) = v0 . 

dt 

Because this is a second-order equation, we need two variables to fully describe the state of the 
system. Let us choose these state variables to be 

du 
w1(t) = u(t) and w2(t) = (t) ,

dt 

corresponding to the displacement and velocity, respectively. We have the trivial relationship 
between w1 and w2 

dw1 du 
= = w2 . 

dt dt 

Furthermore, the governing second-order ODE can be rewritten in terms of w1 and w2 as 

dw2 d du d2u du 1 1 
= = − 2ζωn = −ω2 u + f = −2ζωnw2 − ω2 w1 + f .n ndt dt dt dt2 dt m m 

Together, we can rewrite the original second-order ODE as a system of two first-order ODEs,­

d w1 w2 
= . 

1dt w2 −ω2 w1 − 2ζωnw2 + fn m 

This equation can be written in the matrix form 

d w1 0 1 w1 0 
= + (21.2)

1dt w2 −ω2 −2ζωn fn w2 m 

A 

with the initial condition 

w1(0) = u0 and w2(0) = v0 . 

1If we define w = (w1 w2)
T and F = (0 f)T, then m 

dw u0 
= Aw + F, w(t = 0) = w0 = , (21.3)

dt v0 

succinctly summarizes the “state-space” representation of our ODE. 
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Solution by Modal Expansion 

To solve this equation, we first find the eigenvalues of A. We recall that the eigenvalues are the 
roots of the characteristic equation p(λ; A) = det(λI − A), where det refers to the determinant. (In 
actual practice for large systems the eigenvalues are not computed from the characteristic equation. 
In our 2 × 2 case we obtain 

λ −1 
p(λ; A) = det(λI − A) = det = λ2 + 2ζωnλ + ω2 .n 

ω2 λ + 2ζωnn 

The eigenvalues, the roots of characteristic equation, are thus 

λ1,2 = −ζωn ± ωn ζ2 − 1 . 

We shall henceforth assume that the system is underdamped (i.e., ζ < 1), in which case it is more 
convenient to express the eigenvalues as 

λ1,2 = −ζωn ± iωn 1 − ζ2 . 

Note since the eigenvalue has non-zero imaginary part the solution will be oscillatory and since the 
real part is negative (left-hand of the complex plane) the solution is stable. We now consider the 
eigenvectors. 

Towards that end, we first generalize our earlier discussion of vectors of real-valued components 
to the case of vectors of complex-valued components. To wit, if we are given two vectors v ∈ Cm×1 , 
w ∈ Cm×1 — v and w are each column vectors with m complex entries — the inner product is now 
given by 

mn 
H ∗ β = v w = vj wj , (21.4) 

j=1 

where β is in general complex, H stands for Hermitian (complex transpose) and replaces T for 
∗transpose, and ∗ denotes complex conjugate — so vj = Real(vj ) + i Imag(vj ) and vj = Real(vj ) −√ 

i Imag(vj ), for i = −1. 
The various concepts built on the inner product change in a similar fashion. For example, 

two complex-valued vectors v and w are orthogonal if vHw = 0. Most importantly, the norm of 
complex-valued vector is now given by ⎛ ⎞ ⎛ ⎞1/2 1/2 

m m√ n n 
∗H ⎝ ⎠ ⎝ ⎠IvI = v v = vj vj = |vj |2 , (21.5) 

j=1 j=1 

∗where | · | denotes the complex modulus; |vj |2 = v vj = (Real(vj ))2 + (Imag(vj ))
2 . Note the j 

definition (21.5) of the norm ensures that IvI is a non-negative real number, as we would expect 
of a length. 

To obtain the eigenvectors, we must find a solution to the equation 

(λI − A)χ = 0 (21.6) 

for λ = λ1 (⇒ eigenvector χ1 ∈ C2) and λ = λ2 (⇒ eigenvector χ2 ∈ C2). The equations (21.6) 
will have a solution since λ has been chosen to make (λI − A) singular: the columns of λI − A are 
not linearly independent, and hence there exists a (in fact, many) nontrivial linear combination, 
χ  0, of the columns of λI − A which yields the zero vector. 
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Proceeding with the first eigenvector, we write (λ1I − A)χ1 = 0 as ⎛ ⎞ ⎛ ⎞ 
−ζωn + iωn 1 − ζ2 −1 χ1 0 

1⎝ ⎠ ⎝ ⎠= 
χ1 

ω2 ζωn + iωn 1 − ζ2 2 0 n 

to obtain (say, setting χ1 = c),1 ⎛ ⎞ 
1 ⎜ ⎟ 

χ1 ⎜ ⎟= c .⎝ −ωn 
2 ⎠ 

ζωn + iωn 1 − ζ2 

We now choose c to achieve Iχ1I = 1, yielding ⎛ ⎞ 
11 

χ1 ⎝ ⎠= . 
1 + ω2 

n −ζωn + iωn 1 − ζ2 

In a similar fashion we obtain from (λ2I − A)χ2 = 0 the second eigenvector ⎛ ⎞ 
11 

χ2 ⎝ ⎠= , 
1 + ω2 

n −ζωn − iωn 1 − ζ2 

which satisfies Iχ2I = 1. 
We now introduce two additional vectors, ψ1 and ψ2 . The vector ψ1 is chosen to satisfy 

(ψ1)Hχ2 = 0 and (ψ1)Hχ1 = 1, while the vector ψ2 is chosen to satisfy (ψ2)Hχ1 = 0 and (ψ2)Hχ2 = 
1. We find, after a little algebra, ⎛ ⎞ ⎛ ⎞ 

−ζωn + iωn 1 − ζ2 −ζωn − iωn 1 − ζ2 
1 + ω2 1 + ω2 

n nψ1 ⎝ ⎠ ψ2 ⎝ ⎠= , = . 
2iωn 1 − ζ2 −2iωn 1 − ζ2−1 −1 

These choices may appear mysterious, but in a moment we will see the utility of this “bi-orthogonal” 
system of vectors. (The steps here in fact correspond to the “diagonalization” of A.) 

We now write w as a linear combination of the two eigenvectors, or “modes,” 

w(t) = z1(t) χ1 + z2(t) χ2 

= S z(t) (21.7) 

where 
S = (χ1 χ2) 

is the 2 × 2 matrix whose jth-column is given by the jth-eigenvector, χj . We next insert (21.7) into 
(21.3) to obtain 

χ1 dz1 
+ χ2 dz2 

= A(χ1 z1 + χ2 z2) + F , (21.8)
dt dt 

(χ1 z1 + χ2 z2)(t = 0) = w0 . (21.9) 

We now take advantage of the ψ vectors. 
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First we multiply (21.8) by (ψ1)H and take advantage of (ψ1)H χ2 = 0, (ψ1)H χ1 = 1, and 
Aχj = λj χj to obtain 

dz1 
= λ1 z1 + (ψ1)H F ; (21.10)

dt 
if we similarly multiply (21.9) we obtain 

z1(t = 0) = (ψ1)H w0 . (21.11) 

The same procedure but now with (ψ2)H rather than (ψ1)H gives 

dz2 
= λ2 z2 + (ψ2)H F ; (21.12)

dt 

z2(t = 0) = (ψ2)H w0 . (21.13) 

We thus observe that our modal expansion reduces our coupled 2×2 ODE system into two decoupled 
ODEs. 

The fact that λ1 and λ2 are complex means that z1 and z2 are also complex, which might appear 
inconsistent with our original real equation (21.3) and real solution w(t). However, we note that 

∗λ2 = λ∗ and ψ2 = (ψ1)∗ and thus z2 = z1 . It thus follows from (21.7) that, since χ2 = (χ1)∗ as1 
well, 

∗ w = z1χ1 + z1 (χ
1) ∗ , 

and thus 
w = 2 Real(z1χ1) . 

Upon superposition, our solution is indeed real, as desired. 
It is possible to use this modal decomposition to construct numerical procedures. However, our 

interest here in the modal decomposition is as a way to understand how to choose an ODE scheme 
for a system of two (later n) ODEs, and, for the chosen scheme, how to choose Δt for stability. 

21.3.2 Numerical Approximation of a System of Two ODEs 

Crank-Nicolson 

The application of the Crank-Nicolson scheme to our system (21.3) is identical to the application of 
the Crank-Nicolson scheme to a scalar ODE. In particular, we directly take the scheme of example 
21.1.8 and replace ũj ∈ R with w̃j ∈ R2 and g with Aw̃j + F j to obtain 

j j−1 Δt j Δt 
(F j + F j−1) .w̃ = w̃ + (Aw̃ + Aw̃j−1) + (21.14)

2 2 

(Note if our force f is constant in time then F j = F .) In general if follows from consistency 
arguments that we will obtain the same order of convergence as for the scalar problem — if (21.14) 
is stable. The difficult issue for systems is stability : Will a particular scheme have good stability 
properties for a particular equation (e.g., our particular A of (21.2))? And for what Δt will the 
scheme be stable? (The latter is particularly important for explicit schemes.) 

To address these questions we again apply modal analysis but now to our discrete equations 
(21.14). In particular, we write 

j j j χ2 w̃ = z̃ χ1 + z̃ , (21.15)1 2
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where χ1 and χ2 are the eigenvectors of A as derived in the previous section. We now insert (21.15) 
into (21.14) and multiply by (ψ1)H and (ψ2)H — just as in the previous section — to obtain 

j j−1 λ1Δt j j−1 z̃ = z̃ + (z̃ + z̃ ) + (ψ1)H Δt (F j + F j−1) , (21.16)1 1 1 12 2 

j j−1 λ2Δt j j−1 (F j + F j−1) ,z̃2 = z̃2 + (z̃2 + z̃2 ) + (ψ2)H Δt (21.17)
2 2 

with corresponding initial conditions (which are not relevant to our current discussion). 
We now recall that for the model problem 

du 
= λu + f , (21.18)

dt 

analogous to (21.10), we arrive at the Crank-Nicolson scheme 

λΔt Δtj j−1 ũ = ũ + (ũj + ũj−1) + (f j + f j−1) , (21.19)
2 2 

analogous to (21.16). Working backwards, for (21.19) and hence (21.16) to be a stable approx­
imation to (21.18) and hence (21.10), we must require λΔt, and hence λ1Δt, to reside in the 
Crank-Nicolson absolute stability region depicted in Figure 21.12(a). Put more bluntly, we know 
that the difference equation (21.16) will blow up — and hence also (21.14) by virture of (21.15) 
— if λ1Δt is not in the unshaded region of Figure 21.12(a). By similar arguments, λ2Δt must also 
lie in the unshaded region of Figure 21.12(a). In this case, we know that both λ1 and λ2 — for 
our particular equation, that is, for our particular matrix A (which determines the eigenvalues λ1, 
λ2) — are in the left-hand plane, and hence in the Crank-Nicolson absolute stability region; thus 
Crank-Nicolson is unconditionally stable — stable for all Δt — for our particular equation and will 
converge as O(Δt2) as Δt → 0. 

We emphasize that the numerical procedure is given by (21.14) , and not by (21.16), (21.17). 
The modal decomposition is just for the purposes of understanding and analysis — to determine if a 
scheme is stable and if so for what values of Δt. (For a 2×2 matrix A the full modal decomposition is 
simple. But for larger systems, as we will consider in the next section, the full modal decomposition 
is very expensive. Hence we prefer to directly discretize the original equation, as in (21.14). This 
direct approach is also more general, for example for treatment of nonlinear problems.) It follows 
that Δt in (21.16) and (21.17) are the same — both originate in the equation (21.14). We discuss 
this further below in the context of stiff equations. 

General Recipe 

We now consider a general system of n = 2 ODEs given by 

dw 
= Aw + F ,

dt (21.20) 
w(0) = w0 , 

where w ∈ R2 , A ∈ R2×2 (a 2 × 2 matrix), F ∈ R2, and w0 ∈ R2 . We next discretize (21.20) by any 
of the schemes developed earlier for the scalar equation 

du 
= g(u, t)

dt 
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simply by substituting w for u and Aw + F for g(u, t). We shall denote the scheme by S and the 
associated absolute stability region by RS. Recall that RS is the subset of the complex plane which 
contains all λΔt for which the scheme S applied to g(u, t) = λu is absolutely stable. 

For example, if we apply the Euler Forward scheme S we obtain 
j j−1 w̃ = w̃j−1 +Δt(Aw̃ + F j−1) , (21.21) 

whereas Euler Backward as S yields 

w̃j = w̃j−1 +Δt(Aw̃j + F j ) , (21.22) 

and Crank-Nicolson as S gives 

Δt Δtj j−1 jw̃ = w̃ + (Aw̃ + Aw̃j−1) + (F j + F j−1) . (21.23)
2 2 

A multistep scheme such as AB2 as S gives 

3 1 3 1j j−1 − j−2 F j−1 − F j−2 w̃ = w̃j−1 +Δt Aw̃ Aw̃ +Δt . (21.24)
2 2 2 2 

The stability diagrams for these four schemes, RS, are given by Figure 21.9, Figure 21.7, Fig­
ure 21.12(a), and Figure 21.11(b), respectively. 

We next assume that we can calculate the two eigenvalues of A, λ1, and λ2. A particular Δt 
will lead to a stable scheme if and only if the two points λ1Δt and λ2Δt both lie inside RS. If either 
or both of the two points λ1Δt or λ2Δt lie outside RS, then we must decrease Δt until both λ1Δt 
and λ2Δt lie inside RS. The critical time step, Δtcr, is defined to be the largest Δt for which the 
two rays [0, λ1Δt], [0, λ2Δt], both lie within RS; Δtcr will depend on the shape and size of RS and 
the “orientation” of the two rays [0, λ1Δt], [0, λ2Δt]. 

We can derive Δtcr in a slightly different fashion. We first define MΔt1 to be the largest Δt such 
that the ray [0, λ1Δt] is in RS; we next define MΔt2 to be the largest Δt such that the ray [0, λ2Δt] 
is in RS. We can then deduce that Δtcr Δt1, M= min(M Δt2). In particular, we note that if Δt > Δtcr 
then one of the two modes — and hence the entire solution — will explode. We can also see here 
again the difficulty with stiff equations in which λ1 and λ2 Δt1are very different: M may be (say) 
much larger than M Δt2 will dictate Δt and thus force us to take many time steps many Δt2, but M — 
more than required to resolve the slower mode (smaller |λ1| associated with slower decay or slower 
oscillation) which is often the behavior of interest. 

In the above we assumed, as is almost always the case, that the λ are in the left-hand plane. 
For any λ which are in the right-hand plane, our condition is flipped: we now must make sure that 
the λΔt are not in the absolute stability region in order to obtain the desired growing (unstable) 
solutions. 

Let us close this section with two examples. 

Example 21.3.1 Undamped spring-mass system 
In this example, we revisit the undamped spring-mass system considered in the previous section. 
The two eigenvalues of A are λ1 = iωn and λ2 = iωn; without loss of generality, we set ωn = 1.0. 
We will consider application of several different numerical integration schemes to the problem; for 
each integrator, we assess its applicability based on theory (by appealing to the absolute stability 
diagram) and verify our assessment through numerical experiments. 

(i) Euler Forward is a poor choice since both λ1Δt and λ2Δt are outside RS=EF for all Δt. The 
result of numerical experiment, shown in Figure 21.20(a), confirms that the amplitude of the 
oscillation grows for both Δt = 0.5 and Δt = 0.025; the smaller time step results in a smaller 
(artificial) amplification. 
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(c) Crank-Nicolson (d) Four-stage Runge-Kutta 

Figure 21.20: Comparison of numerical integration schemes for an undamped spring-mass system 
with ωn = 1.0. 
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(ii) Euler Backward is also a poor choice since λ1Δt and λ2Δt are in the interior of RS=EB for all 
Δt and hence the discrete solution will decay even though the exact solution is a non-decaying 
oscillation. Figure 21.20(b) confirms the assessment. 

(iii) Crank-Nicolson is a very good choice since λ1Δt ∈ RS=CN, λ2Δt ∈ RS=CN for all Δt, and 
furthermore λ1Δt, λ2Δt lie on the boundary of RS=CN and hence the discrete solution, just 
as the exact solution, will not decay. Figure 21.20(c) confirms that Crank-Nicolson preserves 
the amplitude of the response regardless of the choice of Δt; however, the Δt = 0.5 case 
results in a noticeable phase error. 

(iv) Four-stage Runge-Kutta (RK4) is a reasonably good choice since λ1Δt and λ2Δt lie close 
to the boundary of RS=RK4 for |λiΔt| 1. Figure 21.20(d) shows that, for the problem 
considered, RK4 excels at not only preserving the amplitude of the oscillation but also at 
attaining the correct phase. 

Note in the above analysis the absolute stability diagram serves not only to determine stability but 
also the nature of the discrete solution as regards growth, or decay, or even neutral stability — no 
growth or decay. (The latter does not imply that the discrete solution is exact, since in addition to 
amplitude errors there are also phase errors. Our Crank-Nicolson result, shown in Figure 21.20(c), 
in particular demonstrate the presence of phase errors in the absence of amplitude errors.) 

· 

Example 21.3.2 Overdamped spring-mass-damper system: a stiff system of ODEs 
In our second example, we consider a (very) overdamped spring-mass-damper system with ωn = 1.0 
and ζ = 100. The eigenvalues associated with the system are 

λ1 = −ζωn + ωn ζ2 − 1 = −0.01 

λ2 = −ζωn − ωn ζ2 − 1 = −99.99 . 

As before, we perturb the system by a unit initial displacement. The slow mode with λ1 = −0.01 
dictates the response of the system. However, for conditionally stable schemes, the stability is 
governed by the fast mode with λ2 = −99.99. We again consider four different time integrators: 
two explicit and two implicit. 

(i) Euler Forward is stable for Δt 0.02 (i.e. Δtcr = 2/|λ2|). Figure 21.21(a) shows that 
the scheme accurately tracks the (rather benign) exact solution for Δt = 0.02, but becomes 
unstable and diverges exponentially for Δt = 0.0201. Thus, the maximum time step is limited 
not by the ability to approximate the system response (dictated by λ1) but rather by stability 
(dictated by λ2). In other words, even though the system response is benign, we cannot use 
large time steps to save on computational cost. 

(ii) Similar to the Euler Forward case, the four-stage Runge-Kutta (RK4) scheme exhibits an 
exponentially diverging behavior for Δt > Δtcr ≈ 0.028, as shown in Figure 21.21(b). The 
maximum time step is again limited by stability. 

(iii) Euler Backward is unconditionally stable, and thus the choice of the time step is dictated 
by the ability to approximate the system response, which is dictated by λ1. Figure 21.21(c) 
shows that Euler Backward in fact produces a good approximation even for a time step as 
large as Δt = 5.0 since the system response is rather slow. 
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(iv) Crank-Nicolson is also unconditionally stable. For the same set of time steps, Crank-Nicolson 
produces a more accurate approximation than Euler Backward, as shown in Figure 21.21(d), 
due to its higher-order accuracy. 

In the above comparison, the unconditionally stable schemes required many fewer time steps 
(and hence much less computational effort) than conditionally stable schemes. For instance, Crank-
Nicolson with Δt = 5.0 requires approximately 200 times fewer time steps than the RK4 scheme 
(with a stable choice of the time step). More importantly, as the shortest time scale (i.e. the largest 
eigenvalue) dictates stability, conditionally stable schemes do not allow the user to use large time 
steps even if the fast modes are of no interest to the user . As mentioned previously, stiff systems are 
ubiquitous in engineering, and engineers are often not interested in the smallest time scale present 
in the system. (Recall the example of the time scale associated with the dynamics of a passenger 
jet and that associated with turbulent eddies; engineers are often only interested in characterizing 
the dynamics of the aircraft, not the eddies.) In these situations, unconditionally stable schemes 
allow users to choose an appropriate time step independent of stability limitations. 

· 

In closing, it is clear even from these simple examples that a general purpose explicit scheme 
would ideally include some part of both the negative real axis and the imaginary axis. Schemes 
that exhibit this behavior include AB3 and RK4. Of these two schemes, RK4 is often preferred 
due to a large stability region; also RK4, a multi-stage method, does not suffer from the start-up 
issues that sometimes complicate multi-step techniques. 

21.4 IVPs: System of n Linear ODEs 

We consider here for simplicity a particular family of problems: n/2 coupled oscillators. This family 
of systems can be described by the set of equations. 

d2 (1)u du(j) (1) (j) + f (1)(t) ,= g , u , 1 ≤ j ≤ n/2 
dt2 dt 

d2 (2)u (2) du(j) (j) + f (2)(t) ,= g , u , 1 ≤ j ≤ n/2 
dt2 dt 

. . . 

(n/2)d2u du(j) (n/2) (j) + f (n/2)(t) ,= g , u , 1 ≤ j ≤ n/2 
dt2 dt 

where g(k) is assumed to be a linear function of all its arguments. 
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Figure 21.21: Comparison of numerical integration schemes for an overdamped spring-mass-damper 
system with ωn = 1.0 and ζ = 50. Note that the time step used for the explicit schemes are different 
from those for the implicit schemes. 
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We first convert this system of equations to state space form. We identify  

du(1) (1)w1 = u , w2 = ,
dt 

du(2) (2)w3 = u , w4 = ,
dt 

. . . 

du(n/2) (n/2)wn−1 = u , wn = . 
dt 

We can then write our system — using the fact that g is linear in its arguments — as 

dw 
= Aw + F 

dt (21.25) 
w(0) = w0 

T 
0 f (1)(t) 0 f (2)(t) 0 f (n/2)(t)where g determines A, F is given by . . . , and 

du(1) du(2) du(n/2) T 
w0 = u(1)(0) (0) u(2)(0) (0) . . . u(n/2)(0) (0) . 

dt dt dt 

We have now reduced our problem to an abstract form identical to (21.20) and hence we may apply 
any scheme S to (21.25) in the same fashion as to (21.20). 

For example, Euler Forward, Euler Backward, Crank-Nicolson, and AB2 applied to (21.25) 
will take the same form (21.21), (21.22), (21.23), (21.24), respectively, except that now w ∈ Rn , 
A ∈ Rn×n , F ∈ Rn , w0 ∈ Rn are given in (21.25), where n/2, the number of oscillators (or masses) 
in our system, is no longer restricted to n/2 = 1 (i.e., n = 2). We can similarly apply AB3 or BD2 
or RK4. 

Our stability criterion is also readily extended. We first note that A will now have in general 
n eigenvalues, λ1, λ2, . . . , λn. (In certain cases multiple eigenvalues can create difficulties; we do 
not consider these typically rather rare cases here.) Our stability condition is then simply stated: 
a time step Δt will lead to stable behavior if and only if λiΔt is in RS for all i, 1 ≤ i ≤ n. If 
this condition is not satisfied then there will be one (or more) modes which will explode, taking 
with it (or them) the entire solution. (For certain very special initial conditions — in which the w0 
is chosen such that all of the dangerous modes are initially exactly zero — this blow-up could be 
avoided in infinite precision; but in finite precision we would still be doomed.) For explicit schemes, 
Δtcr is the largest time step such that all the rays [0, λiΔt], 1 ≤ i ≤ n, lie within RS. 

There are certainly computational difficulties that arise for large n that are not an issue for 
n = 2 (or small n). First, for implicit schemes, the necessary division — solution rather than 
evaluation of matrix-vector equations — will become considerably more expensive. Second, for 

such that Δtconservative explicit schemes, determination of Δtcr, or a bound Δtconservative ≈ Δtcrcr cr 
and Δtconservative , can be difficult. As already mentioned, the full modal decomposition can cr ≤ Δtcr
be expensive. Fortunately, in order to determine Δtcr, we often only need as estimate for say the 
most negative real eigenvalue, or the largest (in magnitude) imaginary eigenvalue; these extreme 
eigenvalues can often be estimated relatively efficiently. 
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Finally, we note that in practice often adaptive schemes are used in which stability and accuracy 
are monitored and Δt modified appropriately. These methods can also address nonlinear problems 
— in which g no longer depends linearly on its arguments. 
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Chapter 22 

Boundary Value Problems 
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Chapter 23 

Partial Differential Equations 
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