
2.160 
Identification, Estimation, and 


Learning

3-0-9 H-Level Graduate Credit


Prerequisite: 2.151 or similar subject




Reference Books
Reference Books

Lennart Ljung, “System Identification: Theory for the 
User, Second Edition”, Prentice-Hall 1999 

Graham Goodwin and Kwai Sang Sin, “Adaptive 
Filtering, Prediction, and Control”, Prentice-Hall 
1984 

Kenneth Burnham and David Anderson, “Model 
Selection and Multimodel Inference: A Practical 
Information-Theoretic Approach, Second Edition”, 
Springer 1998 



Lecture Notes


• Provided for every lecture 
• Helpful 
• Intensive and extensive 
• Covers a lot of topics 
• Examples  
• Background materials and review 
• Read them before going to the reference books




Grading

• Mid-Term exam, 	 30%


(12:30 pm – 2:30 pm, April 3, 2006) 
• End-of-Term exam	 30%


(12:30 pm – 2:30 pm, May 17, 2006) 
•	 Homework Assignment 20 % 

(8 ~ 9 assignments) 
• Term project 20%


(Suggested topics and guidelines will be provided.)


Total 100% 
Problem Set Weekly Schedule: 

W  R  F  Sa Su  M  T  W  
Out Read Do It Just Asada Due 

notes & PS Do It Office H 



H. Harry Asada

•	 Specializes in Robotics, Biomedical 
Engineering 

•	 Regularly teaches 
– 2.12 Introduction to Robotics 
– 2.151 Advanced System Dynamics and Control 
– 2.165 Robotics 
– 2.14 Feedback Control 
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Mathematical models of real-world systems are often 

too difficult to build based on first principles alone.


Figure by MIT OCW. 

Figure by MIT OCW. System Identification;
“Let the data speak about the system”. 

HVAC 

Image removed for copyright reasons. 

Courtesy of Prof. Asada. Used with permission. 



Physical Modeling : 2.151


1. Passive elements: mass, damper, spring

2. Sources 
3. Transducers 
4. Junction structure 

Physically meaningful parameters 
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System Identification
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Physical 
modeling 

Comparison 

Pros 
1.	 Physical insight and knowledge 
2.	 Modeling a conceived system before 

hardware is built 

Cons 
1.	 Often leads to high system order 

with too many parameters 
2.	 Input-output model has a complex 

parameter structure 
3.	 Not convenient for parameter tuning 
4.	 Complex system; too difficult to 

analyze 

Black Box 

Pros 
1.	 Close to the actual input-output 

behavior 
2.	 Convenient structure for parameter 

tuning 
3.	 Useful for complex systems; too 

difficult to build physical model 

Cons 
1.	 No direct connection to physical 

parameters 
2.	 No solid ground to support a model 

structure 
3.	 Not available until an actual system 

has been built 



System identification and

estimation:


Underpinning Theory of


• Adaptive control 
• Learning algorithms 
• Robust control 
• Adaptive filters 
• Navigation and guidance
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Successfully Applied to:


• The Apollo project: Kalman filter

• Mobile robot navigation 
• Robot skill learning 
• Cardiovascular monitoring 
• Air conditioner control 
• CCV: Control configured vehicle


• Speech recognition 
• Image processing 



The Apollo project: Kalman filter




Estimation and Learning of Ground Characteristics

Professor S. Dubowsky 

Images removed due to copyright reasons.



Mobile Sensor Network
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Image removed due to 
copyright reasons.

f Prof. John Leonard.  

Courtesy of Prof. John Leonard. Used with permission. 



Wearable Sensors:
Wearable Sensors:
Noise Cancellation Using Accelerometers
Noise Cancellation Using Accelerometers

PPG MEMS 
Courtesy of Prof. Asada. Used with permission. 
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Courtesy of Prof. Asada.  Used with permission. 

Courtesy of Prof. Asada.  Used with permission. 



Cardiovascular Monitoring:
Cardiovascular Monitoring:
Invasive Catheter vs. Noninvasive Peripheral Sensors
Invasive Catheter vs. Noninvasive Peripheral Sensors

Noninvasive: 
peripheral sensors 

Invasive: 
Image removed for copyright reasons.
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Courtesy of Prof. Asada. Used with permission. 
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Figure by MIT OCW. 

Deriving ‘central’ information 

from ‘peripheral’ noninvasive measurements


Multi-Channel Blind System Identification Zhang and Asada, MIT




Animal Study
Animal Study
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MultiMulti--channel Blind System ID
channel Blind System ID
A broadcast signal is transmitted through multiple paths 

and observed simultaneously by multiple receivers at 
different locations 
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Figure by MIT OCW. 

Figure by MIT OCW. 

Figure by MIT OCW. 

Multi-Channel Blind System Identification Zhang and Asada, MIT




Cardiovascular MBSI
Cardiovascular MBSI
Cardiovascular system has a structure similar to wireless 
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Multi-Channel Blind System Identification Zhang and Asada, MIT 



MultiMulti--channel Blind System Identification (MBSI)channel Blind System Identification (MBSI)-- A Magic
A Magic 
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Figure by MIT OCW. 

Courtesy of Prof. Asada. Used with permission. 

Image removed for copyright reasons. 

Key Feature

All the channels are driven by the SAME input




Cardiac output waveform estimation using the Laguerre
Cardiac output waveform estimation using the Laguerre 
deconvolution algorithm
deconvolution algorithm
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Courtesy of Prof. Asada. Used with permission. 
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