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Mathematical models of real-world systems are often 
alone. 

ifi
Figure by MIT OCW. 

Figure by MIT OCW. 

too difficult to build based on first principles 

System Ident cation; 
“Let the data speak about the system”. 

Image removed for copyright reasons. 

HVAC 

Courtesy of Prof. Asada. Used with permission. 

Physical Modeling 
1. Passive elements: mass, damper, spring 
2. Sources 
3. Transducers 
4. Junction structure 

Physically meaningful parameters 

(( 
m m −1 

s G ) = 
s Y ) s b + s b + L + b 

= 0 1 m 

sn(s U ) + s a n −1 + L + a1 n 

,ai = ai (M , K B ) 
( ,bi = M b , K B )i 
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System Identification 

Input u( t) Output y( t) 

Black Box 

mY (s ) s b + s b m −1 + L + b 
= 0 1 mG (s ) = 

U (s ) sn + s a n −1 + L + a1 n 

Physical 
modeling Comparison 

Pros 
1.	 Physical insight and knowledge 
2.	 Modeling a conceived system 

before hardware is built 

Cons 
1.	 Often leads to high system order 

with too many parameters 
2.	 Input-output model has a 

complex parameter structure 
3.	 Not convenient for parameter 

tuning 
4.	 Complex system; too difficult to 

analyze 

Black Box 

Pros 
1.	 Close to the actual input-output 

behavior 
2.	 Convenient structure for 

parameter tuning 
3.	 Useful for complex systems; too 

difficult to build physical model 

Cons 
1.	 No direct connection to physical 

parameters 
2.	 No solid ground to support a 

model structure 
3.	 Not available until an actual 

system has been built 
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Introduction: System Identification in a Nutshell 

y(t )
FIR

u(t ) 

b 3b 2 

b 1 

Finite Impulse Response Model t 

( ( ( (t y ) = t u b − 1) + t u b − 2) ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ + b t u − m )1 2 m 

]T mDefine θ := [b , b , ⋅ ⋅ ⋅ , b ∈ R unknown1 2 m 

( T mϕ (t ) := [ t u − ),1 t u − ), 2 ⋅ ⋅ ⋅ , t u − m )] ∈ R known( ( 

Vectorθ collectively represents model parameters to be identified based on observed data


y(t) and ϕ(t )  for a time interval of 1 ≤ t ≤ N . 


Observed data: y ( ),1 ⋅⋅ ⋅ ⋅ ⋅ ⋅ , y (N )

Tˆ( 

This predicted output may be different from the actual y(t) . 

Find θ  that minimize VN (θ ) 

Estimate θ Estimation t y ) = ϕ (t ) θ 

N1VN (θ ) = ∑ ( t y ) − t y ))2( ˆ(
N t = 1 

θ̂ = avg minV (θ )Nθ 

dVN (θ ) 
= 0

d θ 
N }1 ( T 2VN (θ ) = ∑ ( t y ) −ϕ (t )θ )

N t = 1 

N2 ( T∑ ( t y ) −ϕ (t )θ )(−ϕ ) = 0
N t = 1 
N N 

( T∑ t y )ϕ (t ) = ∑ (ϕ (t )θ )ϕ (t ) 
t = 1 t = 1 
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N N T 
 (∑ (ϕ (t )ϕ (t )θ = ∑ t y )ϕ (t )

 t =1  t =1 

=



RN 

N
ˆ −1 (∴ θN = RN ∑ t y )ϕ (t ) 

t =1 

Question1 What will happen if we repeat the experiment and obtain θ̂  again? N

ˆConsider the expectation of θN when the experiment is repeated many times?        

ˆAverage of θN

Would that be the same as the true parameter θ ?0

Let’s assume that the actual output data are generated from 

( T (t y ) = ϕ (t )θ + t e )0 

θ0 is considered to be the true value.  


Assume that the noise sequence {e(t)} has a zero mean value, i.e. E[e(t)]=0, and has no 


correlation with input sequence {u(t)}. 


ˆ 
N N 

−1 ( −1 T (θN = RN ∑ t y )ϕ (t ) = RN ∑[(ϕ (t )θ + t e ))ϕ (t )] 
t =1 

N 
−1  T 

0 
t =1 

N 
−1 ) (= RN ∑ϕ (t )ϕ (t ) θ + RN ∑ϕ ( t e t )0

 t =1  t =1 

RN 
N 

∴ θN −θ0 = RN ∑ϕ ( t e t )ˆ −1 ) ( 
t =1 

Taking expectation 
N N

ˆ  −1 ) ( −1E [θ −θ ] = E RN ∑ϕ ( t e t )
 
= RN ∑ϕ (t ) ⋅ E [ t e )] = 0N 0 (

 t =1  t =1 

Question2 Since the true parameter θ is unknown, how do we know how close0

θ 0
ˆˆ 

N will  be toθ ? How many data points, N , do we need to reduce the errorθ −θ  to a N 0 

certain level? 
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Consider the variance (the covariance matrix) of the parameter estimation error. 
Tθ N −θ )( ˆPN = E [( ˆ θ N −θ ) ]0 0 

N N T 
− 1 ) ( − 1 ) (   

= E 

 RN ∑ϕ ( t e t ) ⋅  R ∑ϕ ( s e s )  N 
 t = 1  s = 1   
 N N 

− 1 ) ( ) ( T= E RN ∑∑ϕ ( s e t e t )ϕ (s )R − 1  
N 

 t = 1 s = 1  
N N 

− 1  ) ( ) ( T= RN ∑∑ϕ ( E t [ s e t e )]ϕ (s )R − 1 
N

 t = 1 s = 1  

Assume that {e(t)} is stochastically independent 

[ ( ) ( 
 E [ s e t e )] = 0 t ≠ s

s e t e E )] =  
( ) ( 

2
 E [e (t )] = λ t = s 

N

− 1  T  − 1 − 1
Then PN = RN ∑ϕ (t )λϕ (t )RN = λRN
 t = 1  

As N increases, RN tends to blow out, but RN/N converges under mild assumptions. 
N1 Tlim ∑ϕ (t )ϕ (t ) = lim 1 RN = R 

N ∞ → N t = 1 N ∞ → N 

− 1 ≅ 
1For large N , R ≅ RN , RN RN N 

0θ 

Nθ̂  

N 

PN =
λ R − 1  for large N .
N 
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I. The covariance PN decays at the rate 1/N. 

1              Parameters approach he limiting value at the rate of 

II. The covariance is inversely proportional to 

N 

λ
PN ∝

Rmagnitude 


 r11 K mr1 

M O M 

mr 1 K mmr 



 



 

R
 =
N 

N 

∑
 t u ( −
 t u i ) ( −
 j)rij =

t 1= 

ˆ

large. 

IV.	 The covariance does not depend on the average of the input signal. Only the 

second moment 

θN

What will be addressed in 2.160? 
A) How to best estimate the parameters  

What type of input is maximally informative? 

θ0 may be accelerated if we design inputs such that R isIII. The convergence of to 

• Informative data sets 

• Persistent excitation 

• Experiment design 

• Pseudo Random Binary signals, Chirp sine waves, etc. 

How to best tune the model / best estimate parameters 

How to best use each data point 

• Covariance analysis 

• Recursive Least Squares 

• Kalman filters 

• Unbiased estimate 

• Maximum Likelihood 

6 



B). How to best determine a model structure 

How do we represent system behavior? How do we parameterize the model? 

i. Linear systems 

• FIR, ARX, ARMA, BJ,….. 

• Data compression: Laguerre series expansion 

ii. Nonlinear systems 

• Neural nets 

• Radial basis functions 

iii. Time-Frequency representation 

• Wavelets 

Model order: Trade-off between accuracy/performance and reliability/robustness 

• Akaike’s Information Criterion 

• MDL 

7 


