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8.4 The Error Back Propagation Algorithm

The Multi-Layer Perception is auniversal approximation function that can approximate
an arbitrary (measurable) function to any accuracy.

Layer 2

I nput Output
Layer Hidden Layers Layer

w{™ =weight of the connection from unit i to unit j in layer m
y{™ = output from unit j in layer m
x™ =input to aunit in layer mfrom unit i

Forward computation
z}m) = ZWJ({“) xm (19
Y™ =g,(z") =X (20)

m=0,1,2,...



Starting from m= 0, al the units can be computed recursively until m = M, output layer.
How do we train the multi-layer perceptron, given training data presented sequentially?

Note: Multi-Layer Perceptrons with nonlinear activation functions, g(z), are nonlinear in
parameters w.
e A single-layer neural net is essentially linear in w, although g(2) is nonlinear.
e |f two consecutive layers have linear activation functions, they can be combined
and replaced by a single layer network.

To be able to deal with nonlinear problems, such as the XOR problem, we now focus on
amulti-layer perceptron with nonlinear activation functions.

The theory of stochastic approximation is not applicable, since the parameters are not
linearly involved in the predictor. However, the Gradient Descent Method (The Widrow-
Hoff algorithm) can be extended to multi-layer perceptrons.

The algorithm is called the Error Backpropagation Algorithm.

Example
Consider athree-layer perceptron in order to derive a basic formula of error
backpropagation.
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Likewise,
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The above computation can be streamlined by computing§; , starting from the final layer
back to thefirst layer.

Error (y - y) is propagated backward... Error Backpropagation
In general,

For thefina layer, m=M,
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For hidden layers, 1< m<M -1
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The Error Backpropagation Algorithm
[Wabos 1974, 1994] [Rumelhart, Hinton, & Williams,1986]
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8.5 Stabilizing Techniques

1). Properties of the sigmoid function
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The incremental weight >
change is proportional to g
the derivative of g(z).
In these ranges
weight changes are small.
gz0org=z=1 The largest weight change occursin this
|Z| > 1. range.
g=05,z=0
Z; = ZWJi X The unit has committed to neither O nor 1.
' The error backpropagation algorithm
Once the unit (j) has committed to take forces the unit to react significantly to that
an output value of either “0” or “1”, the input.

weight w;; will no longer change very
much for that inputs.

These features contribute to stabilizing
the learning process



2) Smoothing by adding a momentum term
Ravine: atypical failure scenario of convergence
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3) How to get rid of local minima
- Increase the number of hidden units
- Randomize the initial weights and repeat |earning,
then take the best one.
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