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11 Informative Data Sets and Consistency

11.1 Informative Data Sets
Predictor: §(tft —1) = H *(@)G(q)u(t) + [L— H (q) Jy(t)

ja-0 -, w @] ) |-wi@ ®

Definitionl Two models Wi(q) and W-(q) are equal if frequency functions
W, (e”) =W, () @)
foramostal o -7<w<nx

Definition2 A quasi-stationary data set Z” is informative enough with respect to model
structure M if, for any two modelsin M

y1(t|01) :\Nl(q)z(t) and 92(t|02) :Wz(Q)Z(t)
Condition
E[(yl(t|61) - 92 (t|92))2] =0 (3)
implies
W, (€) =W, (e”) (4)
foramostal w -7<w<nr

Let us characterize a quasi-stationary data set Z” by power spectrum @, (@) (Spectrum

Matrix):
) )

o.(a) { J(0) Dy (@)

o, () (Dy(a))}e R*? (5)

Theorem 1 A quasi-stationary data set Z” is informative if the spectrum matrix for
Z(t) = (u(t), y(t))" is strictly positive definite for amost all o .

Proof

yl(t|01) - 92 (t|92) = [\Nl(q) _Wz(Q)]Z(t)

Using eq.11 of Lecture Note 17, (3) can give by

E[(vvl—vvz)z(t)]=%I_””h/vl(em)—vvz(ei”)]chz(wM(e‘“’)—wz(e”’)]dw=o )



Since @, (w)isstrictly positive definitefor dmostall @ -z <w<z ,theabove
integral becomes zero only when the vector of the quadratic form, W1-W2, is zero for
amost all . Namely,

W,(€”)=W,(e) fordmostal o -z<w<x

Remark: Theorem 1 appliesto an arbitrary linear model set. Aslong as the spectrum
matrix @, (w)isstrictly positive definite, the data set can distinguish any two linear
mocels, regardless of model structure, ARX,OE etc. Also this applies to closed-loop
systems, where® , () = 0.

11.2 Consistency of Prediction Error Based Estimate

The prediction-error estimate is defined as
Oy =argminV, (,2") 7
TR o P
V, (6,2 )=—Z—g (t,0) (8)
N2
The original problem is to find 6 that minimizes the expected (ensemble mean) squared
prediction error:

V(09,ZV) = E{%gz(t,e)} 9)
However, the erogicity:

. Ny
IL'LQVN 6,27)=V(0) (10
Holds if, (the following conditions are for mathematical rigor)
1) themodel structureisuniformly (in 8) stable and linear,
2) {y(t),u(t)} arejointly quasi-stationary,
3) y(t) and u(t) are generated with uniformly stable filters, and
4) y(t) and u(t) are driven by
e bounded, deterministic inputs, and/or
¢ independent random variables with zero means bounded moments of

True System
Let us assume that the actual data are generated by the following “true system”

i y() =Gy(@u(t) + Ho(@)er () (1)
Where Ho(q) isinversely stable( inverseis also stable) and monic, and {ey(t)} isa

sequence of random variables with zero mean values, variances A and bounded moments
of order 4+93.

When the true system isinvolved in amodel structure

M: {G(q,0),H(q.6)¢eD, | (12)



The following set of model parameters equal to the true system is not empty:
D, (SM) =0 €D, |G(e”.0) = Gy(€”,0),H(€”,0) = H,(€” ,0)i-r < w< x| (13)

Theorem 2 Let M be alinear, uniformly stable model structure containing atrue system

Se M . If aquasi-stationary dataset Z” isinformative enough with respect to M, then
the prediction errors estimate is consistent:

arg ggti)nV(e,ZN) = limarg minv, (0, Z")eD;(S,M) (14)

If, in addition, the parameter of the true system is unique, D; (S,M) =1{6,} ,then
limargminV,, (0,2 "Y=6,; (15)

Proof Consider the difference between V (8) =V (6, ) for arbitrary 6 € D,, and the true
system’s parameter vector 6,,

V(0)-V (@)= EESZ(L@)} - E[%gz(tﬁo)}
(16)
= % E[(gz(t,ﬁ) - &4(t, 6’0))2]+ E[(g(t,e) - g(t,go)). 5('[,'90)]
I
(A)

Compute &(t, 6,) using the true system assumption (11)
&(t,6) = y(1) - 9(1}0) = —Ho (Q)Go(a)u(t) + Ho (@) y(t) =& (1)  (17)
Theree(t, 6,) = g,(t) is an independent random variable of zero mean values. In (A) is
givenby &(t,6 ) —&(t,6,) isgiven by
&(t,0 )~ &(t,6,) = 9(16,) - 9(t[6) (18)

which dependson Z'*, the input-output data upto t-1.
Therefore, it is uncorrelated with e(t), i.e. (A)=0.

o 1. .
V(0)-V(0) - SE5110) - 340, (19
From Theorem 1, since Z” isinformative enough, as long as the two models
corresponding to @ and 6, are different E[(y(t|6?) - 9(t|¢90))2J> 0. This means that
V (0) >V (6,) for al 6=6, (20)



11.3 Frequency Domain Analysis of Consistency
Using eg.(11), the mean prediction error can be written as
V() = E{igz(t,e)} _ 1 [ . (0.6)do (21)
2 A o=

where® _ (w, ) is the power spectrum of the prediction error {g(t,@ )}. Based on the true
system description (11)
£(6,6) = H, ' [y() - G,u()]= H, (G, - G, u(®) + Hoey (8)]

(22)
=H,'[(G, -G, ut) + (Ho — H, e )]+ &, 1)
D (,0) :w®u(w)+w% + 2 (23)
[H,| [H,|

For an open-loop system with @, (@) =0
It follows directly from (21) and (23) that, if there exist the parameter vector such that
G, =G,andH, —H,, then such 6, minimizesV (), the equivalent result to Theorem 2.

Consider a case that noise model H (g, &) has been known asfixed: H(g,0) =H (q).

The minimization of V (#)is then reduced to

(I)u (a))

0 = arg;ninj' ‘Go(ei”) - G(e“”,e)‘2 : ‘H (&) ~do (24)

Remarks:

e Themodd G(q,0) ispushed towards the true system Go(q) in such away that the
weighted mean squared difference in the frequency domain be minimized.

D, ()
)
power spectrum(if the variance of ey(t) is unity). In other words, it is a signal-to-
noise ratio.

e Theweight, , isthe ratio of the input power spectrum to the noise

A Good agreement for
high SN weight
G(e")

»
>

Poor agreement as the

High frequency noise
Input magnitude

True
system 4
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