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12. Informative Experiments 

12.1 Persistence of Excitation 

Informative data sets are closely related to “ Persistence of Excitation”, an important 
concept used in adaptive and learning controls. See the block diagram of an indirect 
adaptive control system below. The control system monitors input-output data in order to 
identify the plant model in real, and modifies the feedback control as the plant dynamics 
vary; hence the control system is adaptive to varying plant dynamics. 
 
 
 Adaptation 

Law 
Model

Plant
Feedback 
Control 

)(ty  

 )(tu-

+

 
 
 
 
 
 
 
 
 (Indirect) Adaptive Control
 
 
Success of this adaptive control system hinges on the data. The central question is 
whether the input-output data obtained in real-time are informative enough to identify the 
plant model uniquely. This is often questionable, since the control system tends to drive 
the plant to a specific set point or to follow a specific trajectory. The trajectory may not 
be rich enough to excite the system. The following theory of persistent excitation and 
informative experiment are fundamental to these questions. 
 
Definition 4   A quasi-stationary signal{ })(tu , with spectrum )(ωuΦ , is said to be 
persistently exciting of order , n
if the condition: 

( ) 0)(
2

≡Φ ωω
u

i
n eM       (1) 

implies 
( ) 0≡ωi

n eM      (2) 
 
where is an arbitrary linear filter of form: )(qMn

 
n

nn qmqmqmqM −−− +++= 2
2

1
1)(     (3) 

 1



Remarks: 

1. Note ( ) )(
2

ωω
u

i
n eM Φ  is the power spectrum of  )()()( tuqMtv = . Therefore, a 

signal u(t) that is persistently exciting of order  cannot be filtered to zero by any 
(n-1)st order moving average filter (3), hence it is called persistently exciting. 
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2. Consider function , associated with )()( 1−zMzM nn ( )2ωi
n eM .  
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If a+ib is a zero of  , a-ib is also a zero, since the function has all 

real coefficients. Also, if a+ib is a zero, then its reciprocal 
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of the function since the function is symmetric with respect to the unit circle, 
. See the figure below. This function can have at most (n-1) zeros on the 

unit circle. Therefore,
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 may be zero for at most (n-1) 

different frequencies. In consequence, if 0)( ≠Φ ωu  for at least n different 
frequencies; πωωπ <<− n,,1  then u(t) is persistently exciting. 
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The following lemma provides a useful method for checking persistence of excitation: 
 
Lemma:  Let u(t) be a quasi-stationary signal. Consider the nn×  matrix given by 
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Then  is persistently exciting of order n if and only if )(tu nR  is non-singular. 
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Proof   
 
Put the coefficients of into an n-dimensional vector:  )(qMn
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Consider a quadratic form: mRm n

T . It is known that the following two are equivalent 
( nR  is non-singular )  (⇔ 0=mRm n

T  implies 0=m ) 
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Therefore, 0=mRm n
T  means ( ) 2

( ) 0, for almost alli
n uM e ω ω ωΦ ≡ . Matrix nR is non-

singular, is equivalent to ( ) 0)(0)(
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Therefore,  is persistently exciting of order  if and only if )(tu n nR is non-singular. 
 

12.2 Conditions for Informative Experiments 

 
Based on the persistently exciting condition, how can we design experiments so that any 
two models of a model set can be distinguished, i.e. informative experiments? 
Consider two models: i =1, 2  of a model set  *M , 
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( )ii qGqG θ,)( = ,  ( )ii qHqH θ,)( = , ( )ii tq θεε ,)( =     (7) 

 
and their difference  

)()()( 12 qGqGqG −=∆ ,  )()()( 12 qHqHqH −=∆     (8) 
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Let us compute the difference of prediction error between the two models: 
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Using the true system model: 
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Combining (9) and (11) yields, 
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Suppose that the experiment is carried out in open-loop, so that u(t) and  are 
uncorrelated.  The mean of  is given by  (See Lecture Note No.15.  eq.(9)) 
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If (17) implies ( ) 0≡∆ ωieG , then the two models are equal, and the experiment is 
informative enough w.r.t. *M . 
 
This last condition is basically equivalent to the persistently exciting condition given by 
Definition 3 and Lemma. 
 

Considering a concrete model for ),( θqG  leads to the following theorem. 
 

Theorem 3    Consider a model set *M of SISO systems: 
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and ),( θqH  is inversely stable. Then an open-loop experiment with an input that is 
persistently exciting of order  is informative enough w.r.t. fb nn + *M . 
 
Proof   
For two different models, and ; )(1 qG )(2 qG
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Therefore (17) becomes 
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Relating 1 2 2 1B F B F−  to ( )i

nM e ω  in (15), we find that 

- Factoring out  does not change ( ) knie −ω
1 2 2 1B F B F−  

- The remaining part is a polynomial of order . 1−+ fb nn
 

Since the input is persistently exciting of order , (21) implies )(tu fb nn + 1 2 2 1 0B F B F− ≡ , 
i.e.        QED. 0)( ≡∆ qG
 
The point is: 
    (The order of persistent excitation) ≥  ( The number of parameters to be estimated) 
 

12.3 Signal-to-Noise Ratio and Convergence Speed 

From Theorem 2 we know that, if a model set includes the true system, and the data set is 
informative enough with respect to the model set, the estimated model converges to the 
true system, i.e. consistent. Furthermore, from Theorem 3 we know that, as long as the 
input sequence has the order of persistent excitation greater than the number of 
parameters involved in the model set, the model converges to the true model.  This 
convergence is guaranteed regardless the magnitude of noise. However, the convergence 
speed may depend on the noise magnitude or, more specifically, the signal-to-noise ratio. 
The following is to examine the convergence characteristics. 
 
Using the true system dynamics given by (10), the prediction error of a model 
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Note that the second term in the last expression, ( )0 0( )H H e tθ− , does not contain  

but is a function of , because both  and 
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where ( )u ωΦ  is the power spectrum of the input, and 0λ  is the variance of the White 
noise. Applying eq.(9) in Lecture Note No 15 to the above power spectrum ( , )ε ω θΦ , we 
obtain the following result. 
 
Theorem 4  Let ( , )tε θ  be the prediction error of a model in a linear time-invariant 
model set ( ) { ( ), ( ); }MM G q H q Dθ θθ θ= ∈ . Assume that the true system given by 
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the optimal parameter that minimizes the mean squared prediction error 
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where ( )u ωΦ  is the power spectrum of the input u(t), and 0λ  is the variance of the White 
noise .  0 ( )e t
 
The proof is obvious. 
 
 The convergence process of the above system is complicated. If we assume that 
the noise model  is known or fixed: ( )H qθ
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The following observation can be made for this simplified expression. 
 
Remarks: 
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• The model  is pushed towards the true system G( )G qθ o(q) in such a way that the 

weighted mean squared difference in the frequency domain be minimized. 

• The weight, 2* )(

)(
ω

ω
i

u
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Φ , is the ratio of the input power spectrum to the noise 

power spectrum (if the variance of eo(t) is unity). In other words, it is a signal-to-
noise ratio. 

• At frequencies where the signal-to-noise ratio is higher, the model converges to 
the true system more rapidly. See the figure below. 
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