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12. Informative Experiments
12.1 Persistence of Excitation

Informative data sets are closely related to “ Persistence of Excitation”, an important
concept used in adaptive and learning controls. See the block diagram of an indirect
adaptive control system below. The control system monitors input-output data in order to
identify the plant model in real, and modifies the feedback control as the plant dynamics
vary; hence the control system is adaptive to varying plant dynamics.
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(Indirect) Adaptive Control

Success of this adaptive control system hinges on the data. The central question is
whether the input-output data obtained in real-time are informative enough to identify the
plant model uniquely. Thisis often questionable, since the control system tends to drive
the plant to a specific set point or to follow a specific trgjectory. The trgjectory may not
be rich enough to excite the system. The following theory of persistent excitation and
informative experiment are fundamental to these questions.

Definition 4 A quasi-stationary signal {u(t) }, with spectrum®,, () , is said to be
persistently exciting of order n,
if the condition:

M, (€] ®,@)=0 (1)
implies
M, (€”)=0 2

where M (q) isan arbitrary linear filter of form:

M, (@) =mg™*+mg?+---+maq" ©)



Remarks:
1. Note ‘Mn(é“’fd)u(a)) isthe power spectrum of v(t) = M (q)u(t) . Therefore, a

signal u(t) that is persistently exciting of order n cannot be filtered to zero by any
(n-D)st order moving average filter (3), hence it is called persistently exciting.

ut) — M@ ———v(@)

2. Consider function M_(2)M (z™), associated with ‘Mn(e‘“’r.
M. (DM, (z) =Mz +mz?+--+mz")(MZ +m2z* +---+m2") @
=(M+mz+--+mz")(m+mz+--+mz"")
If a+ibisazeroof M (2M,(z7), a-ibisalso azero, since the function has all

real coefficients. Also, if a+ibisazero, thenits reciprocal az;'bbz isaso azero
a“+

of the function since the function is symmetric with respect to the unit circle,
z <> 7. Seethefigure below. This function can have at most (n-1) zeros on the

unit circle. Therefore, ‘M n(e“"]2 = Mn(e‘“’)M n(e‘“”) may be zero for at most (n-1)
different frequencies. In consequence, if ® (@)= 0 for at least n different
frequencies, — 7 < w,,---,, < 7 then u(t) is persistently exciting.

a+ib

a-ib
a’+b?

The following lemma provides a useful method for checking persistence of excitation:

Lemma: Let u(t) be aquasi-stationary signal. Consider the nx n matrix given by

RO R® - R(-J
ﬁn _ R.J(l) RJ(O) RJ(n_ 2) c R™" (5)
R.(n-1 - R(0)
Then u(t) is persistently exciting of order nif and only if R, isnon-singular.



Proof

Put the coefficients of M (q) into an n-dimensional vector:
m=(m m, - m) eR™.

Consider a quadratic form: m'R m. It is known that the following two are equivalent
(R, isnon-singular ) <> (MR m=0 implies m=0)

Compute m'Rm

R(O) R m
WRme(m - m)| RO RO m
R.(0))(m,
MR,(0)+ MR, ++++ MR (n-1)
(m o om)|  MROTMRO:-
MR, (N=1)+-

=iimmaﬂ¢%%m=22mm&mw
= 2 mmE[u®u(t-(G-})]=> > mmE[ut-iu(t-j)]

=EY mu(t—i)}, mu(t-j)= E[M,(q)u)]*

_1 r

=1 20 (w)dw (6)

M, (€°)

Therefore, MR m=0 means‘Mn(é‘”)ZCDU(a))zO, for dmost al . Matrix R, isnon-

singular, is equivalent to ‘Mn(ei“’f@u(a;) =0->M (9 =0

Therefore, u(t) is persistently exciting of order n if and only if R, isnon-singular.
12.2 Conditions for Informative Experiments

Based on the persistently exciting condition, how can we design experiments so that any
two models of amodel set can be distinguished, i.e. informative experiments?

Consider two models: i =1, 2 of amodel set M,



G()=G(a.4), H(@)=H(a.8) &) =¢(t6) (7)

and their difference

AG(q) =G,(a) -G(a), AH(q)=H,(a)-H,(a) 8)
Note

&) =y-9()
=y-— [Hi’lGiu + (1— Hi’l)y]
= Hiily_ HiilGiu
L et us compute the difference of prediction error between the two models:
A&(Q) = £,(a) - £,(0)
= Hl_ly_ H1_1G1u_‘92
:Hl_l[y_Glu_ ngz]

=H;'| Gu-Gu-Gu+y-Hg, ©)
%/_/H_/

AGU H,e,
=L 1AG(g)u(t) + AH (q)e, ()]

H,(q)

Using the true system model:
y(t) = Go(a)u(t) + Hy ()& (t) (10)

&,(t) can bewritten as
&(t)=H,'y—H;'Gu
=H,*[Gyu+H,& —G,u] (11)
1

11 L(G(@) ~Ca(@)ut + Ho(ahey (0]

Combining (9) and (11) yields,

1 G,(0)-G,(q) H,(a)
Ag(t) = AG B A AN A\ —0V A t 12
&(t) Hl(Q)( (o) + H.(0) (q)ju(t)+H2(q) (@) &(t) (12)
A(Q) B(q)

Suppose that the experiment is carried out in open-loop, so that u(t) and e,(t) are
uncorrelated. The mean of Ag?(t) isgiven by (See Lecture Note No.15. eq.(9))



(&) @@ +[B(e") [ 2 0o

j>z

E[Ae (t)]— T [

(13)
where 4, = E[€(t)] and

I G, (€7)-G, (e N
A(e”)| =|aG(e”)+ ( H)(e“”)< ) aH (€”) (14)
B(e") - :ZE::))AH(G:“”) (15)
Therefore, E[(gl(t)—gz(t))z] = E[(9,(t]6,) - 91(t|91))2] =0 implies
@u(w)\A(e“”) *~0 and \E';(e‘w)\2 = 0: both must be identically zero. (16)
<«— Eq. (15
AH(€°)=0
AG(e” | @, (@) =0 (17)

If (17) implies AG(ei”’ ) =0, then the two models are equal, and the experiment is
informative enough w.rt. M".

Thislast condition is basically equivalent to the persistently exciting condition given by
Definition 3 and Lemma.

Considering a concrete model for G(q,8) leads to the following theorem.
Theorem 3 Consider amodel set M~ of SISO systems:
-{6(0,0),H(q,0)|6<D,.| (18)
where G(q,6) isarational function:

B(q; 9) _ Q’“k (bl + bzq‘l 4ot ban*(nh—l))

- — (19)
F(a,9) 1+ f,gt++f g™

G(q.0) =




and H(q,0) isinversely stable. Then an open-loop experiment with an input that is
persistently exciting of order n, +n, isinformative enoughw.rt. M".

Proof
For two different models, G,(q) and G,(q);

AG(q) = 2D _B.(@) _ B(@)F,(9)-B,(IF(9) 0
R@ R F()F,(0)

Therefore (17) becomes
Bi(¢")F.(¢")-B.(e") (")
M, (e”)

“,(0)=0 (21)

Relating [BF, - B,F;| to |, (¢”)| in (15), wefind that

- Factoring out (ei“’)_"k does not change |B,F, - B,F|
- Theremaining part isapolynomial of order n, +n, —1.

Sincetheinputu(t) is persistently exciting of ordern, + n, , (21) implies |BlF2 — BZF1| =0,
ie AG(Q)=0  QED.

Thepoint is:
(The order of persistent excitation) > ( The number of parameters to be estimated)

12.3 Signal-to-Noise Ratio and Convergence Speed

From Theorem 2 we know that, if amodel set includes the true system, and the data set is
informative enough with respect to the model set, the estimated model convergesto the
true system, i.e. consistent. Furthermore, from Theorem 3 we know that, as long as the
input sequence has the order of persistent excitation greater than the number of
parameters involved in the model set, the model converges to the true model. This
convergence is guaranteed regardless the magnitude of noise. However, the convergence
speed may depend on the noise magnitude or, more specifically, the signal-to-noise ratio.
The following is to examine the convergence characteristics.

Using the true system dynamics given by (10), the prediction error of a model
M (6) ={G,(q), H,(q); & € Dy} isgiven by

£(t,0) = H, [y(t) - G,u(®)] = H, (G, - G, Ju(t) + Hoey (1)

(22)
=H,"[(G, -G, ut)+ (H, — H, e, (1) ]+ &, (t)



Note that the second term in the last expression, (HO - Hg)q)(t) , does not contain e,(t)
but isafunction of g (t—1)---, because both H, and H, are monic. Therefore, the three
terms are uncorrelated to each other. As aresult, the power spectrum of &(t,8) isgiven
by

Go-Gy[°

|2

Ho—H,|°
@u(w)+|°H—9|/10 + A (23)

|2

P, (w,0) =

[H, H,

where @, (w) isthe power spectrum of theinput, and 4, isthe variance of the White
noise. Applying eg.(9) in Lecture Note No 15 to the above power spectrum @ (w,0), we
obtain the following result.

Theorem 4 Let &£(t,0) bethe prediction error of amodel in alinear time-invariant
model set M (6) ={G,(q), H,(q); € € D,,} . Assume that the true system given by

y(t) = G,(q)u(t) + H,y(g)e, (t) and the model process are quasi-stationary processes, then
the optimal parameter that minimizes the mean squared prediction error

V(6) = % E[=(t,0)?] isgiven by

6= agmin | {[G,(¢) -G, (") - 2o R o

. 2 . 2
H,(€")] H, ()]
where @ (w) isthe power spectrum of the input u(t), and 4, isthe variance of the White
noise g(t).
The proof is obvious.

The convergence process of the above system is complicated. If we assume that
the noise model H,(q) isknown or fixed:

H,(a)=H"(q) (25)
then (24) reducesto

P, ()

"2 do (26)
H(e")

~ 2
0 =arg minj ‘Go(e“”) - G(e‘“’,&’)‘ -
0

The following observation can be made for this simplified expression.

Remarks:



Themodel G,(q) is pushed towards the true system Go(q) in such away that the
weighted mean squared difference in the frequency domain be minimized.

The weight,

®U (a))
e

, isthe ratio of the input power spectrum to the noise

power spectrum (if the variance of ey(t) is unity). In other words, it is a signal-to-

noise ratio.

At frequencies where the signal-to-noise ratio is higher, the model converges to
the true system more rapidly. See the figure below.
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