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13 Asymptotic Distribution of Parameter Estimates 

13.1 Overview 

If convergence is guaranteed, then . *ˆ θθ →N

But, how quickly does the estimate  approach the limit ? How many data points 
are needed?  Asymptotic Variance Analysis 

Nθ̂
*θ

 

 
 
The main points to be obtained in this chapter 
 
The variance analysis of this chapter will reveal 

a) The estimate converges to at a rate proportional to *θ
N
1  

b) Distribution converges to a Gaussian distribution: N(0, Q). 

c) Cov  depends on the parameters sensitivity of the predictor: Nθ̂ θ∂
∂ŷ  

 
Identified model parameter  with cov  :     a “quality tag” confidence interval Nθ̂ Nθ̂

 

12.2 Central Limit Theorems. 

The mathematical tool needed for asymptotic variance analysis is “Central Limit” 
theorems. The following is a quick review of the theory.  

ˆ
Nθ  

Distribution of ˆ
Nθ  The variance is 

small for large N. 

 *θ

How quickly 
does the variance 
reduce?

Iteration/Data Number 
The variance is 
large for small N. 

 1



Consider two independent random variable, X and Y, with PDF, and .  
Define another random variable Z as the sum of X and Y: 

)(xf X )(yfY

YXZ +=  
Let us obtain the PDF of Z. 
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)(xf X  and  have the same 
uniform distribution. Combining the 
two distributions, we can obtain the 
distribution of Z. 

)(yfY

( )Z X Yf z= +  
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Further, consider ,  has the same rectangular PDF as X and Y. VYXW ++= )(vfV

 
 

)(wfW   
 
 
 
 
 
 

The resultant PDF is ge

 

w  

tting close to a Gaussian distr
3
1
-3                        -1       0
ibution. 
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In general, the PDF of a random variable  approaches a Gaussian distribution, 

regardless of the PDF of each , as N gets larger. More rigorously, the following 
central limit theorem has been proven. 

∑
=

N

i
iX

1

iX

 
A Central Limit Theorem of Independent Random Variables 
 
Let  be a d-dimensional random variable with , 0,1,tX t =

Mean   )( tXEm =        

Co-variance  ( )( )[ ]T
tt mXmXEQ −−=       (1) 

 
Consider the sum of  given by mX t −

( )∑
=

−=
N

t
tN mX

N
Y

1

1

       (2) 
 

Then, as N tends to infinity, the distribution of YN converges to the Gaussian distribution 
given by PDF: 
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where  

( )
1

1lim
N

tN t

y X
N→∞

=

= −∑ m . 

 

13.3 Distribution of Estimate ˆ
Nθ  

Applying the Central Limit Theorem, we can obtain the distribution of estimate as N 
tends to infinity. 

Nθ̂

Let be an estimate based on the prediction error method (PEM); Nθ̂

),(minargˆ N
NDN ZV

M

θθ
θ∈

=        (4) 

 

∑
=

=
N

t

N
N t

N
ZV

1

2 ),(
2
11),( θεθ        (5) 

 
For simplicity, we first assume that the predictor )(ˆ θty  is given by a linear regression: 

θϕθ Tty =)(ˆ          (6) 
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and the parameter vector of the true system, 0θ , is involved in the model set, MD∈0θ . 
 
The actual data is generated by  
 

)()(ˆ 00 tety T += θϕθ          (7) 
where  

[ ]
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st
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Since minimizes  Nθ̂ ),( N

N ZV θ
 

1',0),(),ˆ(' ×
= ∈== d

N
N

NN
N

NN RVZV
d
dZV

Nθθθ
θ

θ   (8) 

 
Using the Mean Value Theorem, can be expressed as NV '
 

NNNNN
N

NN
N

N
N

NN orZVZVZV θξθθξθθθξθθ ˆˆ)ˆ)(,(''),('),ˆ(' 0000 ≤≤≤≤−+=  (9) 
 
where Nξ  is a parameter vector somewhere between 0θ  and ˆ

Nθ . 
 

Assuming that N
N

NN V
d
dZV '),(''
θ

ξ =  is non-singular and using (8) for (9), 

 
[ ] ),('),(''ˆ

0
1

0
N

N
N

NNN ZVZV θξθθ −
−=−     (10) 

 
To obtain the distribution of , let us first examine  as N tends to 
infinity. 

0
ˆ θθ −N ),(' 0

N
N ZV θ

 

0
1

00 ),(1),(' θθθ
εθεθ =

=
∑=

d
dt

N
ZV

N

t

N
N ,         (11) 

 

Recall )(ˆ)(),( θθε tytyt −=  and (6) 

 

),()(ˆ
00

tty
d
d

d
d Tϕθ

θθ
ε

θθ −=−=        (12)  

and 
)()()()(),( 00000 tettett TT =−+= θϕθϕθε  

 
Therefore, (11) reduces to 

 4



 

)()(1),('
1

00 tet
N

ZV
N

t

N
N ∑

=

=− ϕθ        (13) 

 
Let us treat tXtet ≡)()( 0ϕ  as a random variable. Its mean is zero, since 
 

[ ] [ ] [ ] 0)()()()( 00 === teEtEtetEm ϕϕ      (14) 
 

The covariance is 
 

( )( ) 0 0cov( ) ( ) ( ) ( ) ( ) 0, forTT T
t s t sX X E X m X m E t e t e s s tϕ ϕ⎡ ⎤ ⎡ ⎤= − − = =⎣ ⎦⎣ ⎦ s≠  

(15) 
[ ] [ ] RttEteEXX TT

tt 0
2
0 )()()()cov( λϕϕ ==         (16) 

 
Note that X1, X2, …, XN are independent, since e0(t) is independent. 
 
Consider 

( ) )()(11
1

0
1

tet
N

mX
N

Y
N

t

N

t
tN ∑∑

==

=−= ϕ  

 
and apply the Central Limit Theorem. The distribution of YN , i.e. ),(' 0

N
N ZVN θ− , 

converges to a Gaussian distribution as N tends to infinity. 
 

),0(~),(' 00 RNZVNY N
NN λθ−=      (17) 

 
Next, compute  ),('' N
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ε
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Therefore, under the ergodicity assumption, 
 

( )
1

1'' ( , ) lim ( ) ( )
N

N
N N N t

V Z t t
N

ξ ϕ ϕ
→∞

=

= ∑ T R=      (19) 
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From (10), (17) and (19), the distribution of )ˆ( 0θθ −NN converges to the Gaussian 
distribution given by 
 

∞→− NasQNN N ),0(~)ˆ( 0θθ        (20) 
where 

1
0

1
0

1 )( −−− == RRRRQ λλ         (21) 
 

Note that, as coordinate transformation y=Ax is performed, the covariant matrix C 
associated with a multivariate Gaussian distribution is transformed to ACAT. This is used 
in (21). 
 

Large N 

Small N 

(0, )N Q  

0
ˆ( )Nθ θ−  

0
ˆ( )NN θ θ−  

 
 
Remarks 
 
1) Eq.(20) manifests that the standard deviation of  decreases at the rate of 0

ˆ θθ −N

N
1 for large N. See the figure above. Note that Q

NN
1ˆcov =θ . 

 
2) The above result is for a very restrictive case. A similar result can be obtained for 

general cases with mild assumptions. 
 The true system (7) does not have to be assumed. Instead, )(minarg* θθ V=  

must be involved in DM.  
 The linear regression (6) can be extended to a general predictor where the model 

parameter θ  is determined based on the prediction error method (4), (5). 
 
The extended result of estimate distribution is summarized in the following theorem, i.e. 
Ljun’g Textbook Theorem 9-1. 
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Theorem 1   Consider the estimate determined by (4) and (5). Assume that the model 
structure is linear and uniformly stable and that the data set 

Nθ̂
∞Z satisfies the quasi 

stationary and ergodicity requirements. Assume also that converges with probability 1 
to a unique parameter vector  involved in D

Nθ̂
*θ M: 

 
∞→∈→ NaspwDMN 1..ˆ *θθ     (22) 

 
and that 

0)('' * >θNV  ;  positive definite      (23) 
 
and that 
 

*

1

1 ˆ'( *) lim ( ) ( , )   converges to  with probability 1
N

tN t

dV y t t m
N d θ

θ θ ε θ
θ→∞

=

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑     

          (24) 
 

where  is the ensemble mean given by tm

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛= ∑

=

N

t
t tty

d
dEm

1
*),()(ˆ

θ
θεθ

θ
       (25) 

 
Then, the distribution of )ˆ( 0θθ −NN converges to the Gaussian distribution given by 
 

),0(~)ˆ( 0 θθθ PNN N −         (26) 
 

where is given by θP

[ ] [ ] 1*1* )('')('' −−
= θθθ NN VQVP       (27) 

 
( )( ) ])(')('[lim ** T

NNN
VVENQ θθ⋅=

→∞
       (28) 

The proof is quite complicated, since the random variable *),()(ˆ
θ

θεθ
θ

tty
d
d

⎟
⎠
⎞

⎜
⎝
⎛  is not 

independent. Therefore, the standard central limit theorem is not applicable. 
 
Appendix 9A, at p.309 of Ljung’s textbook, shows the outline of proof.  Since the model 
structure is assumed to be stable uniformly in θ , Xt and Xs are independent as and are 

distal.  Because of this property, the sum, 

t s

(∑
=

−
N

t
tt mX

N 1

1 ) , converges to the Gaussian 

distribution. 
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13.4 Expression for the Asymptotic Variance. 

 As stated formally in Theorem 1, the distribution of ( )*ˆ θθ −NN  converges to a 
Gaussian distribution for the broad class of system identification problems.  This implies 
that the covariance of  asymptotically converges to: Nθ̂

θθ P
N

Cov N
1~ˆ         (29) 

 
This is called the asymptotic covariance matrix. 
 
The asymptotic variance depends not only on 
 
(a) the member of samples/data set size: N, but also on 
 
(b) the parameter sensitivity of the predictor: 
 

( ) ** ),()(ˆ, *
θθ

θε
θ

θ
θ

θψ t
d
dty

d
dt −==  and    (30) 

 
(c) Noise variance 0λ . 
 
Let us compute the covariance once again for the general case.  Form (5) and (30), 
 

( ) ( )∑∑
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−==
N

t

N

t

N
N tt

Nd
dt

N
ZV

d
d

11
,),(1),(1, θψθε

θ
εθεθ

θ
   (31) 

 
Unlike the linear regression, the sensitivity  ( )θψ ,t is a function of θ , 
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⎠
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 (32) 

 
 
When the true system is contained in the model structure, MD∈0θ , and that is unique, 
 

)(),( 00 tet =θε         (33) 
 

from (28), (31), and (33) 
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Also from (32) 
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Since and )(0 te y
d
d ˆ2

2

θ
are independent, the second term varnishes.  Substituting (34) and 

(35) into (29), 

This depends on 1tZ − not on tZ  

 

( )[ ] 1
00

0 ),(),(1~ˆ −
= θψθψλθ θ ttE

N
P

N
Cov T

N     (36) 

 
The asymptotic variance is therefore a) inversely proportional to the number of samples, 
b) proportional to the noise variance, and c) inversely related to the parameter sensitivity. 
The more a parameter affects the prediction, the smaller the variance becomes. 
 
Since 0θ  is not known, the asymptotic variance cannot be determined.  In practice, 
however, an empirical estimate, like the following formula, works well for large N. 
 

1

1
)ˆ,()ˆ,(1ˆ

−

=
⎥
⎦

⎤
⎢
⎣
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= ∑

N

t
N

T
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N
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∑
=

=
N

t
NN t

N 1

2 )ˆ,(1ˆ θελ      (38) 

 
If one computes NP during experiments, sufficient data samples needed for assuming the 
model accuracy may be obtained. 
 

13.5 Frequency-Domain Expressions for the Asymptotic Variance. 

The asymptotic variance has different expression in the frequency domain, which we will 
find useful for variance analysis and experiment design. 
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 Let transfer function ( )θ,qG and noise model ( )θ,qH be consolidated into as 1X2 
matrix: 

( ) ( ) ( )[ ]θθθ ,,,, qHqGqT =      (39) 
 

The gradient of T, that is, the sensitivity of T to θ , is  
 

( ) ( ) ( )[ ]θθθ
θ

θ ,',,'),(,' qHqGqT
d
dqT ==      (40) 

 
For a predictor, we have already defined ( )θ,qW  and z(t), s.t. 

[ ] )()()()()()(ˆ tWZ
y
u

WWtyqWtuqWty yuyu =⎥
⎦

⎤
⎢
⎣

⎡
=+=θ  

Therefore the predictor sensitivity ),( θψ t is given by 

[ ] )('')(ˆ),( tZWWty
d
dt yu== θ
θ

θψ    (41) 

 
'

uW and are computed as '
yW

),(
''),(),(),( 2

1'

θ
θθ

θ
θ

θ zH
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d
dzW

d
dW uu

−
==⇒ −   (42) 

 

[ ]
),(
),('),(1),( 2

1'
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θ
θ
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d
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d
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Substituting these back to ),( θψ t  
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⎣
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⎦
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⎦
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⎢
⎣

⎡
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G
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1
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)(

1
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1
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),(
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θ
θ

θ
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    (43) 

 
At 0θθ = (the true system), note )(),( 00 tet =θε  and 

)()(),()(),(),( 00
1

00
1 tetyqHtuqGqH =+− −− θθθ  

)(),('),(),( 000
1

0 txqTqHt θθθψ −=∴      (44) 
 
where . [ ]Ttetutx )()()( 00 =
Let )(

0
ωxΦ be the spectrum matrix of  )(0 tx
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⎥
⎦
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⎢
⎣

⎡
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Using the familiar formula: ωω
π

π

π
dR ss )(

2
1)0( ∫− Φ=  

[ ] ωθωθθ
π

θψθψ ωωπ

π

ω deTeTeHttE iT
x

iiT ),(')(),('),(
2
1),(),( 00

2

000 0
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−

−∫   (46) 

 
For the noise spectrum, 

2

00 ),()( θλω ωi
v eH=Φ       (47) 

 
Using these in (36) 

1
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1
2
11~ˆ

0

−

− ⎥
⎦

⎤
⎢
⎣

⎡
Φ

Φ∫
π

π

ωω ωθωθ
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θ deTeT
N

Cov iT
x

i

v
N  

 
The asymptotic variance in the frequency domain. 
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