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13 Asymptotic Distribution of Parameter Estimates

13.1 Overview

If convergence is guaranteed, then éN -6 .

But, how quickly does the estimate é?N approach the limit@" ? How many data points
are needed? - Asymptotic Variance Analysis
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ZQD>

9*

»
»

/ |teration/Data Number
Thevarianceis How quickly
large for small N. does the variance
reduce?
The main pointsto be obtained in this chapter
The variance analysis of this chapter will reveal
a) The estimate convergesto &' at arate proportional to %
b) Distribution convergesto a Gaussian distribution: N(0O, Q).
oy

c) Cov éN depends on the parameters sensitivity of the predictor: 20

|dentified model parameter éN with cov éN :a“quality tag” confidence interval

12.2 Central Limit Theorems.

The mathematical tool needed for asymptotic variance analysisis “Central Limit”
theorems. The following is a quick review of the theory.



Consider two independent random variable, X and Y, with PDF, f, (x)and f,(y).
Define another random variable Z asthe sum of X and Y:

Z=X+Y
L et us obtain the PDF of Z.

y A
Prob(z<Z < z+Az) Axy
Z+Az=X+Yy
= [ [ 10 f, (y)dxay
AXY
{ j f, (X) fY(z—x)dx}Az: f,(2)Az
S i >
Z=X+Yy X
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f.(x) and f,(y) havethe same \ /
uniform distribution. Combining the f (2
two distributions, we can obtain the 1
distribution of Z. 1/2
-2 2 Z

Further, consider W= X +Y +V, f,(v) hasthe same rectangular PDF as X and Y.
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| 1 > > W
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The resultant PDF is getting close to a Gaussian distribution.




N
In general, the PDF of arandom variable Z X, approaches a Gaussian distribution,
i=1

regardless of the PDF of each X, , asN getslarger. More rigoroudly, the following
central limit theorem has been proven.

A Central Limit Theorem of I ndependent Random Variables

Let X,,t=0,1,--- bead-dimensional random variable with
Mean m=E(X,)
Co-variance Q= E[(Xt —m)(X, - m)T] (1)

Consider thesum of X, —m given by
1 N
=——> (X,—-m
2%~ o

Then, as N tends to infinity, the distribution of Yy convergesto the Gaussian distribution
given by PDF:

1 1A
fY(y)_ (Zﬁ)dlzmexp{_zy Q y} (3)

where

N—

= Ilmfz (X,—m)

13.3 Distribution of Estimate éN

Applying the Central Limit Theorem, we can obtain the distribution of estimate éN asN
tends to infinity.
Let 6, be an estimate based on the prediction error method (PEM);

6, =argminV, 0,z") (4)
Ny 11,
Vi (0,2")==> = &%(1,0) ®)
N <2

For simplicity, we first assume that the predictor 9(t|¢9) is given by alinear regression:
J(tjo)=9"0 (6)



and the parameter vector of the true system, 6,, isinvolved in the model set, 6, € D,, .

The actual datais generated by

J(t0) =" 0, + & (1) (7)
where
Ele e ©]=1 "
SHAEIT10 1xs
Since 6, minimizes V,,(6,Z")
- d .
Vi 002" = V(04,2 0oy, =0, V'R ®)

Using the Mean Value Theorem, V' can be expressed as
Vi (002" =V (00 Z") 4V (60, 2" 00 - 6) By <&u<bor 6,620, (g
where & isaparameter vector somewhere between 6, and éN.

Assuming that V"' (£,,Z") =%V'N isnon-singular and using (8) for (9),

by -0, ="\ (60,29 V' (6,,2Y) (10)

To obtain the distribution of éN —0,, let usfirst examine V', (6,,Z") asNtendsto
infinity.

de

Vi (0,2 = Yot 0) S (1)
Recall e(t,0) = y(t) - 9(t|9) and (6)

de d . T

0%~ " dg §(10)|4, =" (1), (12)

and
(t,6,) = §0T ()6, +&(t) - (”T (1)6, =& (1)

Therefore, (11) reducesto



. 1<
-V'y (6,,2") :NZCD(t)eo(t) (13)
t=1
Let ustreat o(t)e,(t) = X, asarandom variable. Its mean is zero, since

m=E[p(t)e,(t)]= Elp(t) [E[e,(1)]=0 (14)
The covarianceis
cov( X, X]) = E[( X, —m)( X, - m)T} = E[gp(t)q)(t)eo(s)(p(s)T] =0, fort=s

_ B _ (15)
cov(X,X[) = E[&(t) Elpe(t)" |= 2R (16)

Note that X;, Xz, ..., Xy are independent, since ey(t) is independent.

Consider

Z (X, —m)= Zqo(t)eo(t)

and apply the Central Limit Theorem. The distribution of Yy ,i.e. —VNV' (6,,Z"),
converges to a Gaussian distribution as N tends to infinity.

Y, =—J/NV' (6,,Z") ~ N(0,4,R) (17)

Next, compute V"', (£,,Z")
n d 1
V N(§N’ZN)=_VN(612N19:§

~do NZ (t e)de‘ﬂ N

42 (18)
de ( de
- {@(@j w00} g }\

1
N
1 r
=NZ(¢>0>¢) ®)

t=1

Therefore, under the ergodicity assumption,

N

V(602" = M3 (o0 () =R (19)

t=1



From (10), (17) and (19), the distribution of JN (éN — 6,) converges to the Gaussian
distribution given by

N (6, -6,)~N(0.Q)as N— oo (20)
where
Q=R*(L,R)R*=4R™ (21)

Note that, as coordinate transformation y=Ax is performed, the covariant matrix C
associated with a multivariate Gaussian distribution is transformed to ACA". Thisis used
in(21).

A A
LargeN
N(0, Q)
4 Small N
N
IN @, -8) (O =)

Remarks

1) EQ.(20) manifests that the standard deviation of éN — 6, decreases at the rate of

L for large N. See the figure above. Note that cov éN = %Q.

JN

2) Theaboveresultisfor avery restrictive case. A similar result can be obtained for
genera cases with mild assumptions.
e Thetrue system (7) does not have to be assumed. Instead, 8 = argminV ()
must be involved in Dy.
e Thelinear regression (6) can be extended to a general predictor where the model
parameter ¢ is determined based on the prediction error method (4), (5).

The extended result of estimate distribution is summarized in the following theorem, i.e.
Ljun’g Textbook Theorem 9-1.



Theorem 1 Consider the estimate éN determined by (4) and (5). Assume that the model

structureislinear and uniformly stable and that the data set Z” satisfies the quasi
stationary and ergodicity requirements. Assume also that 6,, converges with probability 1

to aunique parameter vector 6 involved in Dy:
6, >0 D, wpl asN—w (22)

and that
V", (6)>0; positive definite (23)

and that
V'(6*) = Lm%i(% 9(t|9)]g(t,9)‘9, converges to m with probability 1
" (24)
where m isthe ensemble mean given by

m = E{i (% 9(t|¢9))g(t, Q)H (25)

t=1

Then, the distribution of /N (é,\, — 0,) converges to the Gaussian distribution given by

IN(4, -6,) ~N(O,P) (26)

where P,isgiven by

P, =" )] v, )] 27)

Q=limN-E[(", ()" (6)]] (28)
The proof is quite complicated, since the random variable(dig 9(t|9)}9(t, 9)‘ , isnot
independent. Therefore, the standard central limit theorem is not applicable.

Appendix 9A, at p.309 of Ljung’ s textbook, shows the outline of proof. Since the model
structure is assumed to be stable uniformly in 6, X; and Xs are independent as tandsare

distal. Because of this property, the sum, \/_ z (X, —m), converges to the Gaussian

distribution.



13.4 Expression for the Asymptotic Variance.

As stated formally in Theorem 1, the distribution of +/N(d, — 6" ) convergesto a
Gaussian distribution for the broad class of system identification problems. Thisimplies
that the covariance of ¢, asymptotically converges to:

Cové,, ~ % P, (29)

Thisis called the asymptotic covariance matrix.
The asymptotic variance depends not only on
(a) the member of samples/data set size: N, but also on

(b) the parameter sensitivity of the predictor:

w(t,o")= % y(6), = —%g(‘[, 9), and (30)

(c) Noisevariance A, .

L et us compute the covariance once again for the general case. Form (5) and (30),

d N1 de 13
Al (0.2V)= < ég(t,e) SN ;g(tﬁ)t//(t,@) (31)

Unlike the linear regression, the sensitivity (t,#)isafunction of @,

a2 vy ly[de d_‘//j
deZVN(e’Z - Nz(dew+gd0

zﬁg(wa,e)yﬂ (t,0) —s(t,H)dd—g2 9(t|6’)}

(32)

When the true system is contained in the model structure, 6, € D,, , and that is unique,

&(t,6,) = &(t) (33)

from (28), (31), and (33)



Q=lim-55 Y > Ele v .0 (5. G)e ()]
t=1 s=1 (34)

= lim > el 8y 0= AED Ay 0]

Also from (32)

N d? .
V : E ('[,(90) T(t’eo)_ (tyeo)_zy(t0)9i|
Z}{ v (t,6,)w ]80 e |‘0 (3
=E[w(t,eo)w(t,9o)]—€ 7 e

Thisdependson Z' " not on Z'

2

, d
Si t) and
nce g,(t) an 907
(35) into (29),

y are independent, the second term varnishes. Substituting (34) and

Covd, - P, = 2[EW .o €] (36)

The asymptotic variance is therefore a) inversely proportional to the number of samples,
b) proportional to the noise variance, and c) inversely related to the parameter sensitivity.
The more a parameter affects the prediction, the smaller the variance becomes.

Since g, is not known, the asymptotic variance cannot be determined. In practice,
however, an empirical estimate, like the following formula, works well for large N.

= Ay [%Zw(téN)wT (LHAN)} (37)
~ 1&
:N; (38)

If one computes P, during experiments, sufficient data samples needed for assuming the
model accuracy may be obtained.

13.5 Frequency-Domain Expressions for the Asymptotic Variance.

The asymptotic variance has different expression in the frequency domain, which we will
find useful for variance analysis and experiment design.



Let transfer functionG(q,8)and noise model H(q,#)be consolidated into as 1X2

matrix:
T(a,60)=[G(a,6).H(q,0)]

The gradient of T, that is, the sensitivity of T to &, is

d

151(@0)=[G'(a.0)H'(@.0)]

T'(a.0)=

For a predictor, we have already defined W(q,#) and z(t), st.

9(t6) =W, (@)u(t) +W, (@) y(t) = W, Wy{ﬂ =WZ(t)
Therefore the predictor sensitivity w (t,8) is given by
v(.0) =500 =W, w20

W, and W, are computed as

- d d . 4 HG-H'G
W — 2,0)=—H(2,0)G(z,0) =
i=38 L (2,0) a0 (z,0)G(z,0)

S d d )
W, =W, (2,0) = @[1— H(z,6)]=

H'(z,6)
H?%(z0)

Substituting these back to w(t,6)

S

:2;[6‘, H']{H O}P(t)}
H*(q,0) -G 1] y()

I u(t)
" H(q,0) ! (q,@){_ H™Gu+H ‘1y}

[HG-H'G, H'[z(t)

At 6 = 6, (the true system), notee(t, 4,) = e,(t) and
~H™(0,6,)G(a, 6p)u(t) + H (g, ) y(t) = &(t)
2y (t,6,) = H(9,6,)T'(9,65) % (1)

where x,(t) =[u(t) &®)] .
Let @, (@) be the spectrum matrix of X,(t)

H?%(z6)

(39)

(40)

(41)

(42)

(43)

(44)

10



@, (@) q)uaa(w)} D, (@) =4, (45)

(D&(w):[q)u%(—w) @, (@) | @, (0)=0for open—loop

Using the familiar formula: RS(O):Zij” O_(w)dw
72' —T

Ely (t. 6" (t,eo)]zé [ HE".6)| T'@.0)0, @17 (€",0)do  (46)

For the noise spectrum,
i 0 2
D, () = 4o|H (€,6) (47)

Using thesein (36)
1 1r 1

Covh, ~—| —
NON| 27 D ()

T'(ei‘”,6’0)CI)XO(0))T'T (e”",@o)da)]

The asymptotic variance in the frequency domain.
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