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2.3 Physical Meaning of Matrix P 
The Recursive Least Squares (RLS) algorithm updates the parameter vector 

ˆ (θ (t − 1) based on new data ϕT (t ), t y ) in such a way that the overall squared error may 
ˆ ( 

gain matrix which contains matrix Pt-1. To better understand the RLS algorithm, let us 
examine the physical meaning of matrix Pt-1. 

be minimal. This is done by multiplying the prediction error ϕT (t )θ (t − 1) − t y )  with the 

Recall the definition of the matrix: 

P 
t 

t 
−1 T(i ) T= ∑ ϕ ϕ (i ) ΦΦ = (17) 

i =1 
m ×t t ×m m ×m= Φ [ϕ( )..1 ϕ(t )] ∈R ,ΦT ∈ R ,ΦΦ T ∈ R 

Note that matrix ΦΦT varies depending on how the set of vectors {ϕ (i )} span the m ­
dimensional space. See the figure below. 
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Geometric Interpretation of matrix P-1 . 
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mxmSince ΦΦT ∈ R is a symmetric matrix of real numbers, it has all real 
eigenvalues. The eigen vectors associated with the individual eigenvalues are also real. 
Therefore, the matrix ΦΦT can be reduced to a diagonal matrix using a coordinate 
transformation, i.e. using the eigen vectors as the bases. 

λ 0 L 0 
 1  

ΦΦT ⇒ D = 



 0 
M 

λ2 M ∈ Rmxm 

(19)O 
 

 0 L λm  
λ = λ ≥ λ ≥ L ≥ λ = λminmax 1 2 m 

1/λ 0 L 0 
 1  

−1 ⇒ D−1 1/λ2 M  mxmP = (ΦΦT ) = 
 0 
M O 


∈ R 

(20) 
 
 0 L 1/λm  

The direction of λ (ΦΦT ) = The direction of λmin (P) .max 

If λmin = 0 , then det(ΦΦT ) = 0 , and the ellipsoid collapses. This implies that there is no 
input data ϕ(i) in the direction of λmin , i.e. the input data set does not contain any 
information in that direction. In consequence, the m-dimensional parameter vector θ 
cannot be fully determined by the data set. 

In the direction of λ , there are plenty of input data: ϕ(i)L. This direction has beenmax

well explored, well excited. Although new data are obtained, the correction to the 
ˆparameter vector θ (t − 1) is small, if the new input data ϕ(t) is in the same direction as 

that of λ . See the second figure above.max

The above observations are summarized as follows: 

1) Matrix P determins the gain of the prediction error feedback 
ˆ ˆ (θ (t) = θ (t − 1) Κ + t e ) (17)t 

Pt−1ϕ(t)where Kt  is a varying gain matrix: Κ t = (1 +ϕ ( P t ϕ (t))
T )
 t−1 

2) If a new-data point ϕ(t) is aligned with the direction of λ (ΦΦ T ) or λmin (P ) ,max t−1 
T )ϕ ( P t t ϕ (t) << 1 ,−1 

then Κ t ≈ Pt− ϕ(t)   which is small. Therefore the correction is small. 1 
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3)	 Matrix Pt represents how much data we already have in each direction in the m ­
dimensional space. The more we already know, the less the error correction gain Kt 
becomes. Correction ∆θ gets smaller and smaller as t tends infinity. 

2.4 Initial Conditions and Properties of RLS  

a)	 Initial conditions for Po 
Po does not have to be accurate (close to its correct value), since it is recursively 
modified. But Po must be good enough to make the RLS algorithm executable. For 
this, 

Po must be a positive definite matrix, such as the identity matrix I. (21) 

ˆDepending on initial values of θ (0) and Po , the (best) estimation thereafter will be 
different. 

Question: How do the initial conditions influence the estimate? The following theorem 
shows exactly how the RLS algorithm works, given initial conditions. 

Theorem
 The Recursive Least Squares (RLS) algorithm minimizes the following cost function: 

t	 )1 ( T 2 1 
− 
) T − 1 

ˆ
2 

J t (θ ) = ∑( i y ) −ϕ (i )θ ) + ( θ θ (0)) P 0 ( θ θ (0)) (22) 
i = 1 2 

m 

− 

where Po is an arbitrary positive definite matrix (m by m ) and θ (0)∈ R is arbitrary. 

Proof Differentiating J t (θ ) 

t	 )dJ t (θ ) − 1= 0 ( T ) −−∑( i y ) −ϕ (i ) ϕ θ (i ) + P ( θ θ (0)) = 0 (23)0d θ i = 1 

Collecting terms 
t	 t )

− 1 (i ) T	 ( (i ) T 
∑ ϕ ϕ (i ) + P − 1 

θ = ∑ i y ) ϕ ϕ (i ) + P θ (0)	 (24)0 0
 i = 1  i = 1 

P t
− 1

The parameter vector minimizing (22) is then given by  
) t	 ) ( (i ) T − 1θ (t ) = P ∑ i y ) ϕ ϕ (i ) + P θ (0) t 0 

 i = 1  
t − 1 )

− 1 ( ( (i ) T= Pt  t y )ϕ (t ) +∑ i y ) ϕ ϕ (i ) + P θ (0) 0 
 i = 1  
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θ (tPt 
− 1 ˆ − 1)− 1 

− 1(t )	 TRecall Pt 
− 1 = ϕ ϕ (t ) + P t − 1 

) 
t [ − 1 ) 1) ( (t ) T (t ) 

)
θ (t ) = P P θ (t + − t y )ϕ (t ) − θ ϕ ϕ (t − 1)]t 

)	 (25))	 T=θ (t + − P ϕ )[ ( (t )1) ( t y t ) − θ ϕ (t − 1)]t 

Postmultiplying ϕ (t ) to both sides of (14) 
(t )	 TP t − 1 ϕ ϕ ( P t ϕ (t )t − 1P ϕ (t ) = P ϕ (t ) − ( 1 +ϕ ( P t 

) 
ϕ (t ))t t − 1 

t − 1 

P 

T ) 
(26) 

t − 1ϕ (t )
= ( 1 +ϕ ( P t ϕ (t ))T ) t − 1 

using (26) in (25) yields (18), the RLS algorithm, 
ˆ ˆ 1) Pt − 1ϕ (t ) ( T ˆθ (t ) = θ (t + − ( 1 +ϕ ( P t ϕ (t )) ( t y ) −ϕ (t )θ (t − 1)) (18)T ) t − 1 

Q.E.D. 
Discussion on the Theorem of RLS 

  
  
  

t) 1 ( T 2 1 ) T − 1 )
θ (t ) = min arg 

 
∑ ( i y ) − ϕ (i )θ ) + ( θ θ (0)) P 0 ( θ θ (0)) 

 
− − 

2 i = 1	 2θ  1 4 4 4 2 4 4 4 3 1 4 4 4 4  2 4 4 4 4  3 )  
 Squared estimation error Weighted squared from distance θ (0)  
  
 A B  

(27) 

1)	 As t gets larger, more data are obtained and term A gets overwhelmingly larger 
than term B.  As a result, the influence of initial conditions fades out. 

)
2) In an early stage, i.e. small time index t , θ is pulled towards θ (0) , particularly 

when the eigenvalues of matrix P 0 
− 1are large. 

3)	 In contrast, if the eigenvalues of P0 
− 1  are small, θ tends to change more quickly 
( Tin response to the prediction error, t y ) −ϕ (t )θ . 

4) The initial matrix P0  represents the level of confidence for the initial parameter 
)

valueθ (0) . 

Note: The P matrix involved in RLS with an initial condition Po has been extended in the 
t 

RLS theorem from the batch processing case of Pt 
− 1 =∑ ϕ ϕ (i ) to:(i )	 T 

i = 1 
t 

P t 
− 1	 − 1(i )	 T=∑ ϕ ϕ (i ) + P	 (28)o 

i = 1 
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Other important properties of RLS include: 
•	 Convergence of θ (t ) . It can be shown that 


ˆ
θ θ (t 1)lim ˆ(t ) = − − 0	 (29)
t →∞ 

See Goodwin and Sin’s book, Ch.3, for proof. 

• The change to the P matrix: ∆ P = P − P  is negative semi-definite, i.e. t t − 1

(t ) T )P t − 1 ϕ ϕ ( P t	 (30)t − 1∆ P = − ( 1 +ϕ ( P t ϕ (t )) ≤ 0T ) t − 1 

mfor an arbitrary ϕ (t ) ∈ R and positive definite Pt-1 . 


Exercise  Prove this property. 


2.5 Estimation of Time-varying Parameters 
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Least Squares with Exponential Data Weighting 

Forgetting factor: α 

0 ≤ < 1 (31)α

Large α, for slowly Small α, for rapidly 
changing processes parameters/processes 

Weighted Squared Error 
t


i t
−J t (θ ) = ∑α e 2 (i ) (32)  
i = 1 

θ̂ (t ) = min arg J (θ ) (33)t 
θ 

θ ̂(t ) is given by the following recursive algorithm. 

ˆ ˆ 1) Pt − 1ϕ (t ) ( T ˆθ (t ) = θ (t + − ( ϕ α ( P t ϕ (t )) ( t y ) −ϕ (t )θ (t − 1)) (34)
+ T ) t − 1 

(t ) T )1  Pt − 1 ϕ ϕ ( P t  
(35)t − 1Pt = 

α  Pt − 1 − ( ϕ α ( P t ϕ (t )) + T ) t − 1 
 

Exercise: Obtain (34) and (35) from (32) and (33). 

A drawback of the forgetting factor approach 
When the system under consideration enters “steady state”, the matrix 

(t ) T )P t − 1 ϕ ϕ ( P t  tends to the null matrix. This implies t − 1 

1Pt ≈ α
Pt − 1 (36)  

As α<1, 1/ α makes Pt larger than Pt-1 . Therefore { Pt } begins to increase exponentially. 
The “Blow-Up” problem 

Remedy: 

Covariance Re-setting Approach 
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•	 The forgetting factor approach has the “Blow-Up” problem 
•	 The ordinary RLS 

The P matrix gets small after some iterations (typically 10-20 iterations). Then the 
)

gain dramatically reduces, and θ is no longer varying. 

The Covariance Re-Setting method is to solve these shortcomings by occasionally 
re-setting the P matrix to: 

P ∗ = kI 0 < k < ∞ (37)
t 

This re-vitalizes the algorithm. 

2.6 Orthogonal Projection 
The RLS algorithm provides an iterative procedure to converge to its final parameter 
value. This may take more than m ( dimension of  θ )steps. 
The Orthogonal Projection algorithm provides the least squares solution exactly in m 
recursive steps 

Assume = Φ [ϕ (1) ϕ (2) K ϕ (m )]	 (38)m 

Spanning the whole m -dim space 
ˆ

Set P0 =I (the m xm identity matrix) and θ (0)  arbitrary 
Compute 

ˆ ˆ 1)	 ( T ˆθ (t ) = θ (t + − T

Pt − 

)
1ϕ (t ) ( t y ) −ϕ (t )θ (t − 1))	 (39)

ϕ ( P t ϕ (t )t − 1 

where matrix Pt-1 is updated with the same recursive formula as RLS 
Note that +1 involved in the denominator of RLS is eliminated in (39) 
This causes a numerical problem when ϕ ( P t ϕ (t ) is small, the gain is large.  T ) t − 1 

2-parameter example 

This orthogonal projection algorithm is more efficient, but is very sensitive to noisy data. 
Ill-conditioned when ϕ ( P t ϕ (t ) ≈ 0 . RLS is more robust. T	 ) t − 1 
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2.6 Multi-Output, Weighted Least Squares Estimation 

y1(t) 

y2(t)  y 1  
M v  M ( l 

yl(t) 
l -output ty ) =  M ∈ R 

  y l  
For each output ty ) = ϕ T (t )θˆ i ( i


T
ϕ 1   
T × mv̂(ty ) =  M θ Ψ= (t )θ Ψ∈ Rl (40) 

T  ϕ  
 e 1  

r 
( 

 v(Error te ) =  M  = ty ) Ψ− T (t )θ (41) 
  e  

Consider that each squared error is weighted differently, or 

Weighted Multi-Output Squared Error: 


t t r T T r( TJ t (θ ) = ∑ e ( ieWi ) =∑ ( iy ) Ψ− θ ) W ( iy ) Ψ− θ ) (42)rT ) r( (

i = 1 i = 1


ˆ ˆθ (t ) = minarg J (θ ) θ (t ) Β Ρ = tt t 
θ


− 1
t T )=Ρ ∑Ψ ( Wi Ψ (i ) t 
 i = 1  

t

T
Β t = ∑Ψ ( iyWi ) (43)) r( 

i = 1 

The recursive algorithm

ˆ ˆ r( T ˆ
θ (t ) = θ (t − 1) ΨΡ + (t )W ( ty ) Ψ− (t )θ (t − 1)) (44)t 

− 1Ρ =Ρ t − 1 Ρ − t − 1Ψ (t )[ W Ψ+ T (t )Ρ Ψ (t )]− 1 
Ψ T (t )Ρt t − 1 t − 1 
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