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3. Random Variables and Random Processes 
Deterministic System: 

Input Output 

In realty, the observed output is noisy and does not fit the model perfectly. In the 
deterministic approach we treat such discrepancies as “error’. 

Random Process: 

An alternative approach is to explicitly model the process describing how the 
“error” is generated. 

Exogenous 
Input Process 

Observed 
Output 

Process Measurement 

` Noise Noise 

Random Process 

Objective of modeling random processes: 
•	 Use stochastic properties of the process for better estimating parameters and 

state of the process, and 
•	 Better understand, analyze, and evaluate performance of the estimator. 

3.1 Random Variables 

You may have already learned probability and stochastic processes in some subjects. The 
following are fundamentals that will be used regularly for the rest of this course. Check if 
you feel comfortable with each of the following definitions and terminology. (Check the 
box of each item below.) If not, consult standard textbooks on the subject. See the 
references at the end of this chapter. 
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1) Random Variable


X: Random variable is a function that maps every point in the sample space 
to the real axis line. 

F

2) Probability distribution Fx(x) and probability density function fx(x); PDF 

X ( x) = Prob( xX )≤ 

d ( f (x)xf ( x) = xF )x xdx 

x 

In the statistics and probability literature, the convention is that capital X represents 
a random variable while lower-case x is used for an instantiation/realization of the random 
variable. 

3) Joint probability densities 
Let X and Y be two random variables 

fXY(x,y) = Prob (X = x and Y = y, simultaneously) 

4) Statistically independent (or simply Independent) random variables 

fXY(x,y)= fX(x) fY(y) 

5) Conditional probability density 
,f XY ( y x )(= Pr X ob given Y = y) = 

fY ( y)
f Y X 

= (Joint probability density divided by Probability density of Y=y) 

2 



f 

If X and Y are independent,


Y X 
f XY ( y x ) f X ( y f x ) 

= f X ( x )
= 
, 

= 
) (Y 

( (y f ) y f )Y Y 

Occurrence of Y = y does not influence the occurrence of X = x .


6) Bayes Rule

f )
( f x ( x )X Y X 

= ( ,
� f Y X y f ) = f XY ( y x ) = ( x )Y f X Y xf )(X( 
f Y X y f )Y 

7Expectation ) 
∞ 

X E ] = xf X ( dx x
[ )Expected value of X ∫ 
∞ − 

mean, average


For discrete random variables,

X E
 ][ = ∑ x p i i 

i


8) Variance 
( 2 ( 2( [ 2 [ 2VarX = E [( X − X E ))2 ] = X E − 2 XE ( X ) + ( X E )) ] = X E ] − ( XE )) 

9) Moment

k-th moment of X


∞ 
k )
x E k ] = f x X ( dx x [ ∫ 

∞ − 

k=1 mean, k=2, k=3 higher moments 

10) Normal (Gaussian) Random Variable 
X ~ N (m ,σ 2
) : Random variable X has a normal distribution with mean mx and x


2
variance σ 

The first and second moments completely characterize the distribution.

1 1
exp[− ( x − m )]
f X ( x ) = 2 x2 σπ 2σ 

∞ 

σ 2
 = ∫ ( x − m ) f X ( dx x 2 )x


∞ − 
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11) Correlation 
The expectation of the product of two random variables, X and Y 

∞ ∞ 

XY E ] = f xy ( dxdy y x [ , )∫ ∫  XY 
∞ − ∞ − 

Joint probability 
If X and Y are independent 

∞ ∞ 

XY E ] = f xy (x) f ( dxdy y [ )Y∫ ∫  X 
∞ − ∞ − 

∞ ∞ 

) )f x X ( dx x ⋅ ∫ f y Y ( dy y = ∫ 
∞ − ∞ − 

= Y E X E ][ ] [ 

Note that, although the correlation is zero, the two random variables are not 
necessarily independent. 

12) Orthogonality 
X and Y are said to be orthogonal, if E [XY] = 0 

13) Covariance 

Covariance of X and Y = E [(X-mX) (Y-mY)] 

3.2 Random Processes 

Random Variable X Random Process X(t) 

X(t; S1) 

X(t; S2)S1 

S2

Sample 
Space X(t; Sn) 

Waveform Space 
(Waveform Ensemble) 
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A Random Process = a family (ensemble) of time functions having a probability measure 

Characterization of a random process 

• 

fx1 f f

X(t1) X(t2) X(t3) 

First-order Densities 
x2 x3 

• Second-order densities 

Consider a joint probability density fX1X2(x1,x2) 

If the random process has some correlation between two random variables X(t1) and X(t2), it 
can be captured by the following autocorrelation: (“auto” means correlation within the 
single same random process) 

RXX (t , t ) = t X E 1) t X )] = +∞ x x 2 f X X 2
(x , x ) dx dx
1 2 [ ( ( 2 ∫∫ ∞− 1 1 1 2 1 2


If the auto-correlation function depends only on the time difference τ = t − t , it reduces to 1 2


RXX
(τ ) = [ ( +τ ) ( (τ )t X E tX R)]
 = R
XX
 )(−τ even function XX
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Then the process is called “Wide Sense Stationary”. 

Auto-covariance: 

(	 (CXX (t ,t ) = E[( t X ) − m (t )) ⋅ ( t X ) − m (t ))]1	 2 1 X 1 2 X 2 

= RXX (t ,t ) − m (t ) m (t )1	 2 X 1 X 2 

• Higher-order densities 

Joint density	 fX1X2…. Xn (x1,x2 ,…,xn)

[ ( ( (
t X E 1) t X )… t X )] n-th order 2 n 

Total characterization: If joint densities of X(t1) ,X(t 2), ….., X(tn) for all n are 
known, the random process is said to be totally (completely) characterized. … 
Unrealistic. 

Reference Textbook on Random processes 

Lonnie Ludeman , “Random Processes - Filtering, Estimation, and Detection”, Wiley 2003, 
ISBN 0-47 5-6 1-2597

Robert Brown and Patrick Hwang, “Introduction to Random Signals and Applied Kalman 
Filthering, Third Edition”, Wiley 1997 1-12839-2, TK5102.9.B7, ISBN 0-47	 5 
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Application: Adaptive Noise Cancellation 

Let us consider a simple example of the above definitions and properties of random 
processes. Active noise cancellation is a technique for canceling unwanted noise by 
measuring the noise source as well as the signal source. It was originated by Widrow’s 
research in the 60’s, but recently this technique was used for advanced headsets, like 
“Bose”. So, people are using it daily, without knowing it. Here is how it works. 

+ 
_ 

+ 
+x ( t ) 

y ( t ) 

w ( t ) 

z ( t ) 

)(ı 

v ( t ) 

Microphone 1 
Player Recording 

Microphone 2 
Audience Noise 

Recording 

Live Concert Recording 

Noise from the 
audience 

Microphone 2 
Measuring Noise 

Interference 
Dynamics 

Adaptive 
Filter 

Parameter 
Estimator 

Microphone 1 
Player Recording 

True signal from 
the player 

t w 
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Process: 
The recorded signal 

t y ) = t x ) + tw )( ( ( 

Assumed interference dynamics (FIR):

( ( 1) ( 2) � (
t w ) = t v b + − t v b + + − b t v − m )1 2 m 

Interference dynamics model (FIR): 
Tı ( ı ı ( 1) ı ( 2) � ( ) = ϕ ( ıt w ;θ ) = t v b + − t v b + + − b ı tv − tm ) ⋅θ1 2 m 

Noise cancellation: 
: ıθ t w : ıı ( θt y )( −= 

Problem: Tune the FIR parameters θ ( : ı) is as close to the ı so that the recovered signal t z θ 
original true signal x(t) as possible. Assume that the interference w(t) is strongly correlated 
to noise v(t) and that the true signal x(t) is uncorrelated with the noise v(t) . Consider the 
expectation of the squared output t z θ ( : ı) ,( : ı) , i.e. the average power of signal t z θ 

2 2( θ ( ( T ı} ]E [ t z : ı) ] = E [{ t x ) + t w ) −ϕ (t ) ⋅θ 
2 T ı}] 2( ( θ ( T ı} ]= E [x (t )] + 2E [ t x ){ t w ) −ϕ (t ) + ⋅ E [{ t w ) −ϕ (t ) ⋅θ 

Our objective is to find the parameter vector θ ı that minimizes the mean squared error 
2( T ı} ] . Examining the second term: E [{ t w ) −ϕ (t ) ⋅θ 

( ( ( ) ( ( ) ( ( ) (E [ t x ) t w )] = E [ t v b t x − )]1 + E [ t v b t x − )]2 + � + E [ b t x t v − m )] = 01 2 m 

( T ıE [ t x ) ⋅ϕ (t )θ ] = 0 

( : ı) with respect to parameter vector θTherefore, minimizing the average power of t z θ ı is 
T 2equivalent to minimizing E [{ w ( t ) − ϕ ( t ) ⋅ θ ı} ] , 

ı ( T 2 ( 2θ = min arg E [{ t w ) −ϕ (t ) ⋅θ } ] = min arg E [ t z :θ ) ]
θ θ 

(t z ) ) 

(since E [ t x 2 ]) 
of the squared error. 

We can use the Recursive Least Squares algorithm with forgetting factor α ( 0 < α ≤ 1): 

ı ı 1)
+ T ( T ıθ (t ) = θ (t + − 

Pt − 1ϕ 
)
(t ) { t y ) −ϕ (t )θ (t − )}1 

ϕ α ( P t ϕ (t )t − 1 

(t ) T )1 (P − 
Pt − 1 ϕ ϕ ( P t t − 1 )
Pt = α t − 1 ϕ α ( P t ϕ (t )
+ T ) t − 1 

is not a function of the parameter vector and is not relevant to minimization
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