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4. Kalman Filtering 

4.1 State Estimation Using Observers 

In discrete-time form a linear time-varying, deterministic, dynamical system is 
represented by 

xt +1 x A t )u B (1+= t t t 

nx1 rx1where xt ∈R is a n-dimensional state vector, uk ∈ R is an input vector, and A , B are t t 

matrices with proper dimensions. Outputs of the system are functions of the state vector 
and are represented with a � -dimensional vector y ∈ R�x1 :t 

y = x H t (2)t t 

�xnwhere Ht ∈ R is an observation matrix. 
), Ht 

variables, one can simulate the system for predicting states and outputs in response to a 
time sequence of inputs. S igure 4 his simulator may not workwell when ee F -1 below. T
the model parameters are not exactly known;actual outputs observed in the real system 
will differ from the predicted values. 

Given those parameter matrices ( t , B A t and initial conditions of the state 
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Figure 4-1 Dynamic simulator of

deterministic system
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A dynamic state observer is a real-time simulator with a feedbackmechanism for 
recursively correcting its estimated state based on the actual outputs measured from the 
real physical system. S igure 4 e a standard feedbackcontrol ee F -2 below. Note that, unlik
system, the discrepancy between the predicted outputs yıt and the actual outputs yt from 
the real system are fed backto the model rather than the real physical system. Using a 

nx�feedbackgain matrix L ∈ R , the state observer is given by t 

x A ıt u B t L ( yxıt+ 1 − + + = yı )t t t t t (3)
yı = Ht xıtt 

To differentiate the estimated state from the actual state of the physical system, the 
estimated state residing in the real-time simulator is denoted xıt . With this feedbackthe 
state of the simulator will follow the actual state of the real system, and thereby estimate 
the state accurately. If the system is observable, convergence of the estimated state to the 
actual state can be guaranteed with a proper feedbackgain. In other words, a stable 
observer can forget its initial conditions;regardless of an initial estimated state xı0 , the 
observer can produce the correct state as it converges. T tate his is Luenberger’s S
Observer for deterministic systems. 
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F -2 Luenberger’s state observer for igure 4
deterministic linear system 

ıA special case of the above state observer is estimation of constant parameters θ . 
ee eq nS uation (17) in Chapter 2. Replacing the state transition matrixAt by the nx

identity matrixand setting inputs to zero leads to a recursive parameter estimation 
formula in (2-17): 
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ı(t) = ı ( ı(θ θ (t − 1) + Κ ( t y ) − t y )) (2-17)t 

The difference from the previous parameter estimation problem is that in state estimation 
the state makes “state transition” as designated by the state transition matrixAt and the 
input matrixBt driven by an input time sequence. Both recursive parameter estimation 
and state estimation, however, are analogous;both based on the Prediction-Error-
Correction formula. 

Luenberger’s state observer is strictly for deterministic systems. In actual systems, 
sensor signals are to some extent corrupted with noise, and the state transition of the 
actual process is to some extent disturbed by noise. If stochastic properties of these noise 
sources are available, state estimation may be performed more effectively than simply 
using sensor signals as noise-free signals and estimating the sate based on noise-free state 
transition model. Rudolph Kalman investigated this problem and developed the 
celebrated Kalman F urprisingly enough, Kalman did it 10 years before Luenberger ilter. S
published his state observer paper. 

To formulate this stochastic state estimation problem we need to use properties of 
multivariable random processes, which will be summarized in the following section. 

4.2 Multivariate Random Processes 

Let us revisit Section 3.2 and consider the ensemble of time profiles again. Each of these 
waveforms is a realization of random process X(t). (Such a random waveform can be 
seen in your oscilloscope, when you increase the gain of a ground signal. The ensemble 
of waveforms may be considered as a large collection of the same oscilloscope. If you 
have hundreds of the same type of oscilloscopes, you have a collection of diverse ground 
noise waveforms. They come from the same ground signal, but the waveforms are all 
different.) Now that stochastic properties of a single random process have been described 
with the first and second order densities and auto-correlation functions, let us consider 
multiple random processes, say X(t), Y(t), and Z(t), and characterize their properties. (In 
the oscilloscope analogy, you can thinkabout two channels of signals, say channel 1 and 
channel 2, shown on a single oscilloscope display. If there are a large number of the same 
type of oscilloscopes displaying both channels, an ensemble of the two random processes 
can be generated.) 

A Multivariable random process : A vectorial random proces

S
tate variables = n-dimential vector 

Observable outputs with multiple sensors 

irst-order density fXYZ(xF t,yt,zt) 

Covariance: Ensemble mean


(
⎡⎛ t X ) − mx (t) ⎟⎞ 
⎤ 

⎢⎜ ⎥( ) ⎥C t E (t Y ( ( (t X m t t Y mY t t Z (4)( ) ) − ( )Y ) − ( ) ) −
 ( ) ) − )(tmt⎜ ⎟ m
=
 ⎢XYZ Zx 
⎜ ⎟
⎝ ⎠⎢ ⎣ ⎥ ⎦(t Z ) − m (t)Z 

If mx=my=mz=0 
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⎡ X E (t )] t Y t X E )] t Z t X E )]⎤[ 2 [ ( ) ( [ ( ) ( 
[ ( ) ( [ 2 [ ( ) (C XYZ (t ) = ⎢

⎢ t Y t X E )] Y E (t )] t Z t Y E )]⎥ (5)⎥ 
2
⎢ t Z t X E )] t Z t Y E )] Z E (t )] ⎥⎣ [ ( ) ( [ ( ) ( [ ⎦ 
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Figure 4-3 Multivariable random processes 

Second-order density:

ak
T ing two time slices, t1 and t2 , as shown in the above figure, the joint 

probability density is given by: f Z Y X Z Y X 2
( xt , y , z , x , y , z )t 2 t 2
1 1 1 2 2 1 t 1 t 1 t 2


If mx= my= mz=0, the covariance is given by


[ ( ( [ ( ) ( [ ( ) (
⎡ t X E 1) t X )] t Y t X E 2 )] t Z t X E 2 )]⎤2 1 1

⎥[ ( ( [ ( ) ( [ ( ) (C XYZ ( t t ) = ⎢⎢ t Y E 1 ) t X )] t Y t Y E 2 )] t Z t Y E 2 )]⎥ (6)1, 2 2 1 1


⎣ [ ( ( [ ( ) ( [ ( ) (⎢ t Z E 1) t X )] t Y t Z E 2 )] t Z t Z E 2 )]⎥⎦2 1 1


Note that the first order covariance in equation (5) can be viewed as a special case of the 
second order covariance in equation (6); t1
 t == 2
 t
.
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4.3 State-Space Modeling of Random Processes 
We extend the state equation given by (1) in the previous section to the one as a 

nx1multivariable random process. Namely, the state x ∈R is driven not only by the input t

rx1 nx1
u ∈ R but also by noise, which is a random process. Let wt ∈ R be a multivariable t 

random process, called “Process Noise”, driving the state through another matrix 
nxnGt ∈ R . The state equation is then given by 

++x A t = t 

S igure 4 . See F -4 ince the process noise is a random process, the state xt driven by wt is a 
random process. The second term on the right hand side, u B , is a deterministic term. In t t 

the following stochastic state estimation, this deterministic part of inputs is not important, 
since its influence upon the state xt is completely predictable and hence it can be 
eliminated without loss of generality. T uation: herefore we often use the following state eq

xt+1 u B t w G t (7)t t 

xt+1 x A t )w G (8+= t t t 

The outputs of the system are noisy, as long as they are measured with sensors. 
�x1Let vt ∈ R be another multivariable random process, called “Measurement Noise”, 

super-imposed on a deterministic part of the output, the part completely determined by 
the sate variable xt . 

y
t x H t v += t t (9) 

S igure 4 . See F -4 ince measurement noise vt is a multivariable random process, the 
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outputs measured with sensor, too, are a multivariable random process. 
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F -4Sigure 4 tate space representation of linear time varying system

with process noise and measurement noise
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The stochastic properties of the process noise and measurement noise described 
above are now characterized as multivariable random processes. It is a common practice 
that the mean of noise is set to zero since, if the means are non-zero, the origins of the 
state variables and the outputs can be shifted so that the mean of the noise is zero. 

E [v ] = 0t (10)
E [w ] = 0t 

� x 1rom eqF uation (6), the covariance of measurement noise vt ∈ R is given by 

Tv ∈⋅E vt = ][ s 

If the noise signals at any two time slices are uncorrelated, 

� � xCV ( s t ), R (11) 

T ]CV ( s t ) = E [v ⋅, t s t∀ = ,0
 ≠ (12)
v s 

the noise is called “White”. (We will discuss why this is called white later in the 
following chapter.) Note that, if t= s , the above covariance is that of the first order density, 
i.e. an auto-covariance. 

E [v T ⋅=CV ( ) ] (13)t vtt 

The diagonal elements of this matrixare variances of the individual output signals. If 
those outputs are coupled through the state variables and the measurement matrixHt , (see 

uation (9)), it is likeq ely that the off-diagonal elements of the covariance matrixCv are 
non-zero. 

T he covariance matrixishe process noise can be characterized in the same way. T
then given by: 

Tw ∈⋅E wt =), ][ s t sCW (
 R nxn )(14

Furthermore, the correlation between the process noise and the measurement noise may 
ex his can be ist, if both are generated in part by the same disturbance source. T
represented with the covariance matrixgiven by: 

Tv ∈⋅E wt =), ][ s t s 
nx �CWV ( R (15) 

Usually the covariance between the process and measurement noises is zero. 

4.4 Framework of the Kalman Filter 

Consider a dynamical system given by equations (8) and (9), 
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xt+ 1 x A t )w G (8+= t t t 

t x H t v += t t (9)y

nx1 � x1 nx1 � x1 n n � xn ,where x ∈ R , y ∈ R , w ∈ R , v ∈ R , G A ∈ R × , and H ∈ R . Assume t t t t t t t 

that the process noise tw and the measurement noise tv have zero mean values, 

E[wt]=0, E[vt]=0. (16) 

and that they have the following covariance matrices: 

s t CV ),( = ⋅ = vv E T 
st ][ 

⎩ 
⎨ 
⎧ 

Rt 

0 
= ∀ 

≠ ∀ 

st 
st 

(17) 

s t CW ),( = w E t[ = ⋅ w T 
s ] 

⎩ 
⎨ 
⎧ 

Qt 

0 
= ∀ 

≠ ∀ 

st 
st 

(18) 

T ]CWV ( s t ) = w E = ⋅ , [ vt s ∀ t )s (19∀ ,0 

nxnx, and is positive definite, and matrix Q ∈ R is positive semi-where matrixRt is of � � t 

definite. 
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F -5 Noise characteristics igure 4

Optimal State Estimation Problem 
Obtain an optimal estimate of state vector xt based on measurements yt, t = 1,2,…t, 

that minimizes the mean squared error: 

T −− xt ) ( xıt[( )]J E xı (20)= xt t t 
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uation	 (8) and the output eqsubject to the state eq uation (9) with white, uncorrelated 
process and measurement noises of zero mean and the covariant matrices given by 
equations (16) - (18). (Necessary initial conditions are assumed.) 

Rudolf E. Kalman solved this problem around 1960. 

Kalman Filter: two major points of his seminal workin 1960. 

I)	 If we assume that the optimal filter is linear, then the Kalman filter is the state 
estimator having the smallest unconditioned error covariance among all linear 
filters. 

II)	 If we assume that the noise is Gaussian, then the Kalman filter is the optimal 
minimum variance estimator among all linear and non-linear filters. 

4.5 The Discrete Kalman Filter as a Linear Optimal Filter 

Figure 4-6 depicts the outline of the discrete Kalman filter, 

y1 yt-2 yt-1 yt time 

All knowledge 
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error 

up to t-1	 output 
yıt = Ht xı t t | −1 

Correction 
to state 

S
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tate Estimate a priori estimate 

t−1 
estimate x 

ı |x t t −1 a posteriori 
pected state transition Ex	 estimate 
based on the model	 xıt

Figure 4-6 Outline of the Kalman filter algorithm 

Expected state transition 
rom (8), we k	 e a transition F now how the previous estimate xıt−1 will mak

Estimate 

xt ⇐ At − − Gt1xt 1 ;Let’s write this as
 xı
 t t −1+
 −−1wt1 

Transition from estimated state at time t-1, xıt−1 
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x t t − 1 = A E t − − 1 + Gt − − 1]ı [ 1 xıt 1wt (21) 
= At − − 1 + Gt − 1 w E t − 1]1xıt [


Ex
pected state based on xıt− 1 

Estimated output 
Form (9) and (10) 

y ı Note E[vt]=0 (22)tıt = x H t t − 1 

Correction of the state estimate 
Assimilating the new measurement yt, we can update the state estimate in 

proportion to the output estimation error. 

xıt = xı + Kt ( y − x H ı ) (23)t t − 1 t t t t − 1 

Equation (23) provides a structure of linear filter in recursive form. Kt ∈ Rn× l is a gain 
uared error (exmatrixto be optimized so that the mean sq pected value of error) of state 

estimation may be minimized. 

A more general form of linear filter is 
xıt = Kt1 xı + Kt 2 y (24)t t − 1 t 

Both (23) and this form provide the same result. 
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