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4.5.1 The Kalman Gain

Consider the error of a posteriori estimate X,
=X —X = XI‘FI + Kz (yt - Htxz‘zfl) X
=X + K (Hx, +v, —Hx, )X, (25)

= ([ _KtHz)gt + Ktvt

where &, 1is a priori estimation error, 1.e. before assimilating the new measurement

Ve
£ =5, -, (26)
For the following calculation, let us omit the subscript # for brevity,
etTet = [‘91 - Kthgz + Ktvt ]T [gt - Kthgz + Ktvt] (27)

=¢'e+e" HK"KHe — 26" KHe + 26" Kv -2V K" KHe + v K" Kv

Let us differentiate the scalar function e e with respect to matrix K by using the

following matrix differentiation rules.

K11 Kl/ bl df 8f
N f=(a a ... a) i . P :aTKEe%%%}:{aibj}:ﬁET
Knl Knﬂ b% v
(28)
we... Rule 1
iiyg=¢c"K"Kb, beR™, ¢eR"™, KeR"™
{ n n n n _ _
B 0SSk Kb =1 e Kb+ Ko, = Kbe" + Keb'
dK aK,-m i=1 j=1 k=1 j=1 j=1
(29)

....Rule 2



Using these rules,

e = T KT K He — 20 KT KHE +v' KT K] < rule 2
dK dK = T

2-L [T Ky — & KHE] < rule ]
dK

=KHee"H" + KHes" H" —2[KHev" + Kve"H" 1+ 2Kw" +2[ev" —ee"H" ]

(30)
The necessary condition for the mean squared error of state estimate with respect to
the gain matrix K is:

dJ,

~

=0 (31)

>

Taking expectation ofe’ e

[

differentiating it w.r.t. K and setting it to zero yield:

E|KHee" H' — KHev' —Kve"H + Kw' + & —ee"H' |=0 (32)
KH can be factored out,

KHE[ee" |H" — KHE[&" |- KE[ve" JH" + KE[W' ]+ E[&v" |- E[es"JH" =0 (33)

Examine the term E[¢v'] using (26) and (21),
E[gtVzT] = E[()%t\t—l X )VzT]
:E[)Acz\t—lvtT ] - E[xzvtT]

A

For the first term X A%,

fle-1 =

X =Xt Kt—l(g/g_ th-l\z—z)

> H-x,_, +@ <«— Uncorrelated with v,

«—>
—>A-x, ,+w,_, Uncorrelated with v,

L E[Ry v, 1=0
For the second term

x, =A-x,_ +@ <«—» Uncorrelated with v,

—> A-x,,+w,_, «—» Uncorrelated with v,

s E[xv,1=AE[x,_ v, 1+ E[w,_v,1=0

Therefore



Elgy, 1=0 (34)

Now note that the state x, has been driven by the process noise w, ,, w, ,,---, which

are uncorrelated with the measurement noise v,. Therefore, the second term vanishes:
E[x,v/1=0. In the first term, the previous state estimate X,_,is dependent upon the

previous process noise w, ,, w,

5, +--as well as on the previous measurement noise

V.,V ,,, both of which are uncorrelated with the current measurement noise v,.

Therefore, the first term, too, vanishes. This leads to
E[ev"]=E[ve']1=0 (35)
Let us define the error covariance of a priori state estimation

Pt\t—l = E[gtng] = E[(it\t—l _xt)()ez\z—l _xt)T] (36)

Substituting (35) and (36) into (33), we can conclude that the optimal gain must
satisfy

KHP, H'+KR —P

o tfe-1

H' =0 (37)

|e-1

K, =P, H'[HF, H +R] (38)

N
This is called the Kalman Gain.

4.5.2 Updating the Error Covariance

The above Kalman gain contains the a priori error covariance PI‘H. This must be

updated recursively based on each new measurement and the state transition model.
Define the a posteriori state estimation error covariance

Pt = E[(iz _xt)(jez _xt)T] = E[ezezT] (39)



This covariance P, can be computed in the same way as in the previous section. From
(25),

P =E[((I - KH)& + Kv)(I - KH)e + Kv)']
=E[(I -KH)se" (I - KH)" 1+ E[(I - KH)ev" K" |+ E[Kve" (I - KH) 1+ E[KwW'K"]
=(I -KH)E[ee| |(I - KH)" + KE[wW" K"

P, =(I-KH)P), (I~ KH) +KRK" (40)

Substituting the Kalman gain (38) into (40) yields
Pt = (I_Kth)})t‘pl (41)

Exercise. Derive (41)

Furthermore, based on P, we can compute Pm‘t by using the state transition equation

)]
Consider
En = )’enl\t — X
= Az ‘)’et - (Atxt + Gtwt) (42)
= Atet - Gtwt
From (36)
Pt+l\t = E[nggtTﬂ]
=E[(Ade, —Gw,)(4e, - Gtwt)T] (43)

:AtE[e,etT]A,T — G,E[wte,T]AtT — AtE[e,th]G,T + G,E[wtwf]G,T

Evaluating E[we’ Jand E[ew!]

E[eszT] = E[()ez _xt)WzT] = E[{)ez\z—l +Kz(yz —)’}[)}W[T]—E[)CIW[T]

= E[Az—l)et—lwf] + E[Kz (Htxt + Vt)sz] - E[KtHz)eﬂt—thT] - E[xthT] (44)
= At—lE[)%t—lwf] + (Kth - [)E[xthT] + KzE[VtWtT] - KthE[)%m—lwf]

The first term: x,_, does not depend on w,, hence vanishes. For the second term,

using (8), we can write E[xw' |=E[(4,_x,_ +G_w,_)w ]=0 since E[w,_w ]=0.



The third term vanishes since the process noise and measurement noise are not

correlated. The last term, too, vanishes, since x

1does not include w, . Therefore,

Elew! 1= E[w,e/1=0.

P

1+t =

ARA +GOG! (45)

4.5.3 The Recursive Calculation Procedure for the Discrete Kalman Filter

Initial Error Covariance o = B,t=1 : Initial State
Estimate X,
v : Measurement y,
Compute Kalman Gain l l

Kz = Pt\z—lHtT[Hth HtT + Rt]71

|e-1

Update State Estimate with

new measurement
xt\z—l = At—lxt—l

Update error covariance

F=(U-KH)E

v

X = xt\t—l + Kt (yt - Htxz\t—l)

t
[t-1

, , v
Pz+1\z = AthAt + GthGt : ﬂ
: t<«t+1
u State Estimate X,
t<t+1
On-Line or Off-Line Real-Time
This does not depend on measurements On-Line

VY2 oo Vise o



4.6 Anatomy of the Discrete Kalman Filter

The Discrete Kalman Filter
Measurement:

yt :Htxt +vt (9)

Minimizing the mean squared error

_ A -
Jt = E[(xt _xt) (‘xt —X )] (20)
Uncorrelated measurement noise
0 t#s
E [Vt] =0, E [VtVsT ] = { R, fo Noise Covariance

Optimal Estimate

/ Htxz\t—l

X = tt1+K(yt_yt) (23)
l Estimation output error
The Kalman Gain
-1
K, =P, H, (H P, H/ +Rt) (38)

Error Covariance update (a priori to a posteriori):

P, =(I-K,H,)P, (41)
P—E(fc —x)(fc—x)T _ . . .
= L — X, )\X, — X, : a posteriori state estimation error covariance
P,‘t_l =F [()et‘,_l — X, X)AC,‘I_I - X, )r] : a priori state estimation error covariance

Questions

Q1: How is the measurement noise covariance R used in the Kalman filter for
correcting (updating) the state estimate?
R ... sensor quality

Q2: How is the state estimate error covariance P used for updating the state estimate?

Post multiplying H,F, H, "+R, to(3%),

K, (Htht—lHtT + Rz): R

T
t\z—lHt



From (41)

K H Pt\t 1 Pz\t—l _Pz
BH] -PH] +K.R =P _#H~
KR =PH/ (46)

The measurement noise covariance R, is assumed to be non-singular,

K =PH'R (47)

t t t t
Therefore
+PH'R'Ay, (48)

t z\z 1

Q1. Without loss of generality, we can write

o’ 0 A)'/ 1
- B
R = ? . Ayf - - _~Good Sensor
0 0-12 _Aytl _
since if not diagonal we can change the coordinates.
Ay /O_z | )ad Sensor |
t1 1
% =%, +PH | (28)
2
Ay, / 0,

Depending on the measurement noise variance, o, the error correction term is

attenuated; Ay, /o’ . If the i-th sensor noise is large, i.e. large o}, the error

correction based on that sensor is reduced.

Q2. By definition



P is the error covariance of a posteriori state estimation. P is interpreted as a

t

metric indicating the level of “expected confidence” in state estimation at the z-th

stage of correction.

P is large — less confident

nedim L.arge.varlancg n ‘ghls
x, direction 2 Xx, . isnot
state " NI
sure in this direction
space
ﬂ’max

X

X, = : More corrected
based on new data

xt"l

x,l ﬂ’m'n

Associated with matrix P, which is

positive-definite, we can consider an

ellipsoid with eigenvalues

ﬂ’min (I)t ) > /Imax (})t )

=xt2 X, = xt\t—l + PtAq

where Ag=HR'Ay,

1 A
Small variance = In average Xt‘t_l is quite certain in this direction >

No need to make a large change

[-dim A y
measurement !
space A (R)
Yn / .
O R e uncertain measurement
' ' (bad sensor) = Less correction
Yu
-1
R Ay,
Vi
Ao good sensor = dependable
Yu

The Kalman filter makes a clever trade-off between the intensity of sensor noise and
the confidence level of the state estimation that has been made up to the present

time; P, = E[ete,T].



How does the state estimation error covariance change over time?

det(£))
det(£, )

P

t

Update

[

= Pt\z—l _KthPt|t—1
Propagate
Pt+l|t = AtPtAtT + GtQthT

v

time



