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2.160 System Identification, Estimation, and Learning 

Lecture Notes No. 6 

February 24, 2006 

4.5.1 The Kalman Gain 

Consider the error of a posteriori estimate x ıt

et ≡
x ı
t −
xt x ı x ı t t K
t (
y t H
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 )
−
xt+= 1 
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−
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tt t 
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) KtεI K H( +
 vt =
 t t t 

where ε is a priori estimation error, i.e. before assimilating the new measurement t

yt . 

x ıtε ≡
 −1 −
xt (26)t t 

For the following calculation, let us omit the subscript t for brevity, 

=
 tε[ −
 T 
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εKH 

ε[ t ]
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2 T KH 
K H K K H +
K
t vt−+et et vtt t t (27) 
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Let us differentiate the scalar function et
T et with respect to matrix K by using the 

following matrix differentiation rules. 
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Using these rules, 

d T d T T T T T T Tε H �ee t = [ ��� HKK ε − 2 KHKv ε + KvKv ] ← rule 2
dK t dK cT b 

T+ 2 d [ε T Kv − ε KHε ] ← rule 1
dK 

T T T T T T T T Tε= KH εε H + KHεε H − 2[ vKH T + Kvε H ] + 2KvvT + 2[εv − εε H ] 
(3)0

The necessary condition for the mean squared error of state estimate with respect to 
the gain matrix K is: 

Jd t = 0 (31)
dK


aking expectation of ee , differentiating it w.r.t. K and setting it to zero yield:
T t
T 

t 

T T T T T T T T T[ ε 2)KHE εε H − vKH − Kvε H + Kvv + εv − εε H ]= 0 (3

KH can be factored out, 
T T T [ T T T T T[ TKHE[εε ]H − KHE[εv ] − vKE ε ]H + vvKE ] + E[εv ] − E[εε ]H = 0 (33) 

Examine the term

E[ε v T ] = E[(xı − xt )v
T ]t t tt − 1 t 

[ ı T [xE= tt − 1vt ] − vxE T ]t t 

For the first term xı tt − 1 = At − 1 xıt − 1 

ı + Kt − 1( yt − 1 − xH ıt − 1 )xt − 1 = xıt − 1 t − 2 t − 2 

H ⋅ xt − 1 + 

][ TvE ε 

1−tv Uncorrelated with vt 

using (26) and (21), 

A ⋅ xt − 2 + wt − 2 Uncorrelated with vt 

ı[ tt − 1vt
T ] = 0∴ xE 

For the second term 

⋅xt = xA t − 1 1−+ tw Uncorrelated with vt 

Uncorrelated with vtA ⋅ xt − 2 + wt − 2 

[ T[ T [∴ vxE t ] = xAE t − 1vt
T ] + wE t − 1vtt 0] = 

Therefore 
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E [ε tvt
T ] = 0 (34) 

1, wNow note that the state xt has been driven by the process noise wt −− 2 ,� , whicht 

are uncorrelated with the measurement noise vt . Therefore, the second term vanishes: 

E [xt v
T ] = 0. In the first term, the previous state estimate x ıt−1 is dependent upon thet 

previous process noise wt −2 , wt −3, �as well as on the previous measurement noise 

1, vvt −− 2 , � , both of which are uncorrelated with the current measurement noise vt .t 

T his leads toherefore, the first term, too, vanishes. T

TE [v ε ==

Let us define the error covariance of a priori state estimation 

T[εv
E ] ] 0 (35) 

T Txt )(x ı −− t t −1 

.

5) and (3
Substituting (3 6) into (33), we can conclude that the optimal gain must 

satisfy 

T TKt Ht P −+ P = 0 (37)t t −1Ht Kt Rt t t −1Ht 

T T −1∴ Kt [H P + R ] (38)= P t t −1Ht t tt −1Ht t 

This is called the Kalman Gain. 

4.5.2 Updating the Error Covariance 

The above Kalman gain contains the a priori error covariance P . This must bett −1

updated recursively based on each new measurement and the state transition model. 
Define the a posteriori state estimation error covariance 

[ε εt [(x ı
P Et t ≡ ] E ) ] (36)= xt−1 t −1tt 

Pt E [(x ıt E =−xt ı)(x−= xt )
T ]t 

T[ ] (39)ee tt 
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This covariance Pt can be computed in the same way as in the previous section. From 
(25), 

E[((I KH )ε KH )εP + − = Kv)((I + − Kv)T ]t 
T [ T TE[(I T T E[(I T T [ T 

) 
− = KH )εε (I − KH ) ] − + KH )ε K v ] + Kv E ε (I − KH ) ] + K Kvv E ] 

T T [ T TKH )= (I − E KH [ε ε ](I + − vv KE ]Kt t 

KH )T +− K KR t (40T )∴ Pt I P KH t t ) I( − (= − 1 

8 )Substituting the Kalman gain (3) into (40yields 

P = (I − H K )P (41)t t t t t − 1 

Exercise. Derive (41)


Furthermore, based on Pt we can compute
 by using the state transition equation Pt+ 1 t 

(8) 
Consider 

ıε t + 1 = xt + 1 t − xt + 1 

x A ıt ( x A + − = w G ) (42)t t t t t 

= e A t − w G tt t 

From (36)

Pt + 1 = E[ε ε T ]
t t + 1 t + 1 

= E[( e A − w G )( e A − w G )T ] (43)t t t t t t t t 

[ T [ T[ T [ T= e e E A t ]AT − e w E G t ]AT − w e E A t ]GT + w w E G t ]GT 
t t t t t t t t t t t t 

[ [Evaluating e w E t
T ]and w e E t

T ]t t 

[ T E[(xıt Kt ( y
T [w e E t ] − = x )wt

T ] = E[{xı t t | − 1 − + yı )}w ] − w x E T ]t t t t t t t


T [
[ vt )w
T ] [ T [= A E t− 1xıt− 1wt ] + K E ( x H − + x H K E ı t t | − 1wt ] − w x E T ] (44)t t t t t t t t 

T T[ ı ( H K ) [ [ [ ıA= t− 1 x E t− 1wt ] − + w x E I T ] + w v E K T ] − x E H K t t | − 1wt ]t t t t t t t t t 

The first term: xıt− 1 does not depend on wt , hence vanishes. For the second term, 

[ T [using (8), we can write w x E t
T ] = E[( At− 1xt− 1 + Gt− 1wt− 1)w ] = 0 since w E t− 1wt

T ] = 0.t t 
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The third term vanishes since the process noise and measurement noise are not 

he last term, too, vanishes, since x ı t t| −1 does not include wt . Tcorrelated. T herefore, 

T E [w eT == t tE
[
et ] ] 0.wt 

TA P At G Q Gt t t t t 
T +=P∴ t +1 t 

4.5.3 The Recursive Calculation Procedure for the Discrete Kalman Filter 

(45)


1,0 == tPP 

1 
1 ][ − 

− + t 
T 
tt 

T 
t RHPHH 

1) −− tt PHKI 

T 
ttt 

T 
ttt GQGA += 

1+← tt 

T

Initial Error Covariance 0 1 

Compute Kalman Gain 

t t 

Update error covariance 

t t 

A P 

On-Line or Off-Line 
his does not depend on measurements 

Initial State 

Estimate x ı0 
Measurement yt 

1− = t PK 

(= tP 

ttP+1 

t t 

)1− 

1+← tt 

Update State Estimate with 

t t 

new measurement 

ııx t t −1 = At −1xt −1 

x ıt = x ı + Kt ( y − Ht x ıt t −1 t 

State Estimate x ıt

Real-Time 
On-Line 

y1,y2,…yt ,… 
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4.6 Anatomy of the Discrete Kalman Filter 

The Discrete Kalman Filter 
Measurement: 

y = Ht xt + vt (9)t 

Minimizing the mean squared error 

Uncorrelated measurement noise 

⎧ 0 t ≠ sTE [vt ] = 0, E [ v v ]= ⎨ Noise Covariance t s 
⎩Rt t = s 

Optimal Estimate ıH t x t t −1 

+ K (y − y ı ) (23x ıt = x ı t t −1 t t t ) 

Estimation output error 

) ( ıt 
T 

t xx −− 

The Kalman Gain 

( )]x ıJt E [ (20)= xtt 

T T −1Kt = P t t −1 H t (H t P t t −1 H t + Rt ) (38) 

Error Covariance update (a priori to a posteriori): 

Pt = (I − Kt Ht )P (41)t t −1

Δ 

ı −−x ı([P =E t 

xt )(x ı −−x ı[E= 1| |t t −1 t t − 

]xt )(xt xt )T : a posteriori state estimation error covariance t 

P )T ] : a priori state estimation error covariance 
Δ ( xtt t −1| 

Questions 

Q1: How is the measurement noise covariance R used in the Kalman filter for t
correcting (updating) the state estimate? 

Rt … sensor quality 

Q2: How is the state estimate error covariance P used for updating the state estimate? t

−
T +PPost multiplying H
t t t 1H
t Rt to (38), 

T TKt (Ht P t t −1Ht + Rt )= P t t −1Ht 
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From (41)


−=K H P Pt t	 t t −1 Pt−1t t 

THP 1−t t Pt H
T K Rt = + − THP 1−t t t t t t 

T 
tttt HPRK∴ = (46) 

The measurement noise covariance tR is assumed to be non-singular, 

1−= t 
T 
ttt RHPK (47) 

Therefore 

xı x ı=
 t t −1 
−1P Ht

T Rt y Δ+ t t (48)t 

Q1. Without loss of generality, we can write 

⎢ 2 ⎥ 
Rt = ⎢

⎢

⎡σ1
2 

σ 2

0 

⎥

⎤ 

Δy = ⎢
⎢
⎡Δ 

� 
yt 1 

⎥
⎥
⎤ 

�	 ⎥ 
t ⎢ ⎥


⎥ ⎢ ⎥
⎢	 2⎢ 0 σ l ⎦⎥ ⎣Δytl ⎦⎣ 

since if not diagonal we can change the coordinates. 
2 

⎥ x ıt + = P H t
T ⎢
⎡Δyt 1 

� 
σ 1 

⎥

⎤ 

(28)ıx t t −1 t ⎢

⎢Δy σ 2 ⎥
⎣ tl l ⎦ 

2Depending on the measurement noise variance, σ , the error correction term is i

attenuated; Δy ti 
2 
iσ . 
 2If the i-th sensor noise is large, i.e. large σ i , the error 

correction based on that sensor is reduced. 

Q2. By definition 

TP = E [ e e t t t ]; et = x ıt − xt 
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Pt is the error covariance of a posteriori state estimation. Pt is interpreted as a 

metric indicating the level of “expected confidence” in state estimation at the t -th 
stage of correction. 

Pt is large less confident 

tnx 

minλ 

� 1ı −x 

maxλ 

⎟ 
⎟ 
⎟ 

⎠ 

⎞ 

⎜ 
⎜ 
⎜ 

⎝ 

⎛ 
= 

tn 

t 

x 

x 
� 

1 

Large variance in this 
direction t t is not 
sure in this direction 

More corrected 
based on new data 

-dim 

space 

n 
state Associated with matrix P , which is t

positive-definite, we can consider an 
ellipsoid with eigenvalues 

λmin (P ) ,λ (P )t max t

xt 2 x ıt = x ı + P Δqt t −1 t 

xt 

where Δq −1H t
T Rt Δ= y t 

x t 1 x ıSmall variance � In average uite certain in this direction �t t −1 is q
No need to make a large change 

l -dim 

1 
1 

x 

tl 

t 

R 
y 

y 
�� ∈ 

⎟ 
⎟ 
⎟ 

⎠ 

⎞ 

minλ : � 

tly 

)(max tRλ 

( ) � 

t yR Δ−1 

measurement 

good sensor dependable 

uncertain measurement 
bad sensor Less correction 

space 

⎛
⎜ 

y = ⎜t 
⎜
⎝ 

t 

yt 2 

yt 1 

The Kalman filter makes a clever trade-off between the intensity of sensor noise and 
the confidence level of the state estimation that has been made up to the present 

Ttime; P = E [ e e ].t t t 
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How does the state estimation error covariance change over time?


det(P )t 

det(P t t | −1) 

1|1| −− −= ttt PHKPP 

t 
T 
ttttt GAPAP +=+ |1 

Update t t t t 

Propagate 

Q GT 
t t 

time 
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