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1. General form of Morrison’s Equation 

Flow past a circular cylinder is a canonical problem in ocean engineering. For a purely inviscid, 

steady flow we know that the force on any body is zero (D’Allembert’s paradox). For unsteady 

inviscid flow this is no longer the case and added mass effects must be considered.  Of course in 

the “real” world, viscosity plays a large role and we must consider, in addition to added mass 

forces, viscous drag forces resulting from separation and boundary layer friction. 

 Following on Tuesday’s lecture, the resulting force on a body in an unsteady viscous 

flow can be determined using Morrison’s Equation, which is a combination of an inertial term 

and a drag term.  The force in the x-direction on a body in unsteady flow with velocity U(t) is  

1( )  = D t  F t  ( )  = ρC ∀U� + ρC  AU U  (1.1)x m 2 d 

In order to obtain rough estimates of the magnitude of the force of a body, it is advantageous to 

use Morrison’s equation with constant coefficients. Supposing we want to find the estimates of 

the wave forces on a fixed structure, then the procedure would be as follows: 

1.) Select an appropriate wave theory (linear waves, or other higher order if necessary). 

2.) Select the appropriate CM and CD based on Reynolds number, and other factors (see 

table below). 

3.) Apply Morrison’s Equation 



Wave Theory Cd Cm Comments Reference 

Linear Theory 1.0 0.95 Mean values for ocean wave data 

on 13-24in cylinders 

Wiegel, et al 

(1957) 

1.0- 2.0 Recommended design values based Agerschou and 

1.4 on statistical analysis of published Edens (1965) 

data 

Stokes 3rd order 1.34 1.46 Mean Values for oscillatory flow Keulegan and 

for 2-3in cylinders Carpenter (1958) 

Stokes 5th order 0.8- 2.0 Recommended values based on Agerschou and 

1.0 statistical analysis of published data Edens (1965) 

We can see from the above table that for linear waves the recommended values for drag 

and mass coefficients are 1.0-1.4 and 2.0, respectively. The range of drag coefficients allows us 

to account for roughness and Reynolds number effects. These values are for rough estimates. In 

reality these coefficients vary widely with the various flow parameters and with time. 

Bretschneider showed that the values of CD and CM can even vary over one wave cycle. Even if 

we ignore the time dependence of these coefficients we must account for the influence of other 

parameters. 

Reynolds number and roughness effects: For smooth cylinders at Reynolds numbers 

around 105, laminar flow transitions to turbulent flow, and there is a dip in CD as a function of 

Re. For larger Reynolds numbers the separation point remains essentially constant and thus so 

does the drag coefficient. In this range CD is Reynolds number independent. Roughness causes 

the change from laminar to turbulent flow at a lower Reynolds number and increases the friction 

and causes a larger CD. The mass coefficient is influenced by the changes in the boundary layer 

and is thus also affected Reynolds number and roughness. 



u(z,t) 

o 

L 

z 

Figure 1. Cylinder in non-uniform inflow 

Suppose a vertical cylinder is subject to a current with a horizontal velocity changing 

( ,both in time and vertically in the z-direction: u z t  ) . The approach in practice is to evaluate, 

using Morrison’s formula, the force acting on a small section of the cylinder (eq. 1.2) at each 

depth and then integrate to get the total force (eq. 1.3). 

1dF  z t  ) = C ρ π 2 �( , )  ( ,( ,  d  u z t dz +C  d  ρ u z t  ) ( ,u z t  ) dz (1.2)M 4 D 2 

z L= 
( ,( )  dF  z t  ) (1.3)F t = ∫z=0 

The moment on the structure around the origin (point 0) is found by integrating the height z 

times dF. 

L
( )  ( ,M t = ∫0 

z dF  z t  ) (1.4) 

There are several limitations to these integrals. First we are limited to assume that each section 

does not influence the adjacent sections’ flow. This assumption becomes questionable in the case 



of a cross flow that forces direct interference between the flow of neighboring sections. The 

second assumption is that the cylinder is not piercing the free surface because in this case the 

water splashing must be taken into account. In the absence of experimental data we use 

Morrison’s equation as a first estimate in this class, but in reality we should attempt a correction 

for the surface piercing phenomena. 

2. Morrison’s Equation when both the body and fluid are moving 

Assume that a vertical cylinder is moving with velocity, u(t), within a fluid with velocity, v(t), 

both velocities in the horizontal direction and uniform in space, then we can write Morrison’s 

equation as follows: 

( 
4

2 �( M 
2 �( 1 [ ( (F  t  ) = ρC π d  l v  t  ) − ρ ( C − 1) π d  hu  t  ) + C ρ d l  v  t  ) − u  t  )] ( (v  t  ) − u  t  ) (2.1)M 4 D 2 

where d is the cylinder diameter and l the cylinder height. It is good to note that this equation 

does not account for the inertial force due to the mass of the cylinder as required by Newton’s 

( (law. For example if the cylinder was subject to an inflow we could set F t) = m a  t  ) , where F(t) 

is found using equation 3.1, m is the mass of the cylinder, and a(t) is the acceleration. 

3.  Forces on an Inclined Cylinder 

Suppose that a cylinder of diameter, d, and large length, l, is at an angle within an 

unsteady inflow, u(t), and we would like to use Morrison’s equation. It has been suggested that 

in such cases of slender objects (large l/d) that we can use the following approach: first 

decompose the inflow velocity into two components Un and Ut, where Un is the velocity normal 

to the cylinder and Ut is the component tangential to the cylinder; then we can use the following 

expressions: 

1F = CM ρ
π 2 �d  U  + CD ρ d U  U  (3.1)n n n n4 2 

and 

1F C f ρπd Ut =  (3.2)t Ut2 



to determine the normal and tangential forces per unit length. The mass and drag coefficients are 

found using the diameter of the cylinder and the normal velocity as in the general (non-inclined) 

case. The frictional coefficient, Cf, is used in the tangential case instead of the drag coefficient 

since the drag results from the flow along (tangential) to the cylinder. 

In the three-dimensional case where we have a vertical cylinder subject to a velocity 

vector (u, v, w) then we must decompose this velocity into components normal and tangential to 

the cylinder. The convention is to take the z-axis parallel with the cylinder axis (centerline) so 

that the w component is the tangential component of velocity:  

2U = u + v2 and Ut = w (3.3)n 

The velocity components (u, v, w) used in eq. (3.3) are taken in the coordinate system with z- 

axis parallel to cylinder axis. Equations (3.1) and (3.2) can then be used to determine the normal 

and tangential force components. Finally the resultant force in a global coordinate system (say 

with z-axis perpendicular to the free surface) can be determined using simple trigonometry.   

These equations have some limitations on as incline angle, as experiments have shown that these 

expressions are valid up to incline angles of about 60º. 

4. Relative Importance of Inertial versus Drag Force Terms  

For an incoming wave train with elevation η (x, t ) = 
h cos  (kx  −ωt )we can determine the 
2 

relative magnitude of the integrated inertial and drag force terms in Morrison’s equation.  

Understanding the maximum forces and also when inertial effects dominate over viscous drag, or 

vice versa, is important in designing offshore structures.  The horizontal velocity and 

acceleration under the wave at the centerline (x=0) of the cylinder are 

 (
u x  = 0,  z  t  ) = hω cosh k z  + H ) cos  ( )  (3.4)( , ωt 

2  sinh  kH 



(0, z t) = −aω
cosh k z  + H ) sin ( )  (3.5)∂u , 2  ( 

ωt 
∂t sinh kH  

Consider the force caused on a vertical cylinder in water depth, H, by a linear wave with 

wavelength, λ, and height, h, given in the form 

F t  I t t( )  = F ( )  + F ( )  (3.6)D 

where FI(t) is the inertial force term and FD(t) is the viscous drag force term.  The inertial force 

FI is dependent on the mass coefficient and can be determined by integrating the force acting 

over the height of the structure. For a structure fixed to the seafloor the inertial force (in the x-

direction) due to waves impinging on a circular cylinder is  

F t   ( 
ωt  dz  . (3.7)( )  = −

0 
ρC π d 2 hω 2 cosh k z  + H ) sin  ( )I ∫−H M 4  2  sinh  (kH ) 

After integrating eq. (4.4) the resultant inertial force is 

F t  M 
2 ωt( )  = −ρC π d 2 h ω sin  ( ) . (3.8)I 4 2k 

Similarly we can find the drag force FD(t) in a similar fashion 

 (
( )  = ∫− 

0 

H 

1
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ρC  d h2 

ω
cosh2 k z  + H ) cos  ( )ωt cos  ( )ωt  dz  (3.9)DF t  D 4 
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sinh 2 kH ) kH  


( 
+ 2 2 

F t( )  = 1 ρC  d h ω  4 2  cos  ( ) cos  ( )ωt (3.10)D 2 D 4 k sinh2 (kH  )
ωt 

The maximum values of these two force components are useful when considering design loads 

on a structure. One way to determine the maximum is to plot equations (3.8) and (3.10), or 

simply to look generally at the equations. The maximum inertial force using the result in eq. 

(3.8) is 

π 
= CM ρ ω2 h (3.11)FImax 4 

d 2
2k 

, 



and the maximum drag force from eq. (4.7) is  

sinh 2 kH ) kH  


(
+ 2 

= 
1 ρ ω  2 h  4 

(3.12)C  d  FDmax 2 d 4 k sinh2 (kH  ) 
2  . 

To compare the effects of inertial versus drag components we can take the ratio FI to FD. 

FDmax CD h sinh 2 kH ) kH   1 (3.13)= FImax 
CM d 

(
4 

+ 
2 
 sinh2 (kH  ) 

Substituting the typical values for drag and mass coefficients, 1.0 and 2.0, respectively, allows us 

to determine how the maximum drag force compares to the maximum inertial force, i.e. 

whenFDmax 
> FImax 

Hh 4sinh2 (kH ) 4sinh2 (2π λ ) (3.14)> 2π = 2π 
Hd sinh 2 kH  ) + 2kH  sinh 4 π H ) + 4π( ( λ λ 

kH

H
If λ is large (deep water) then sinh(kH ) � e  and the deep water asymptote for h/d, such 

2 

that FDmax 
> F , isImax 

H

h e(4π λ ) 
� 4π H ≈ 4π (3.15)

Hd e(4π λ ) + 4π λ 

HIf λ is small (very shallow water) then sinh(kH ) � kH  and the shallow water asymptote for h/d, 

such that FDmax 
> F , isImax 

H 2 

� 2π
4 2π λ ) = (2π )h ( 2 H (3.16)

H + 4 H λd 4π  π λλ 

We could also consider the maximum drag and inertial force (force/length) terms at a specific 

depth, z, below the free surface: 



FDmax 
( ) = 1 ρC  d h2 

ω2 cosh 2 k z  + H ) 
z  ( 	 (3.17)

2 D 4  sinh2 (kH ) 

cosh k z  + H ) 
z 2  ( 	 (3.18)FImax 
( ) = ρCM 

π d 2 hω 
sinh  (kH )4	 2 

The ratio of these two components is 

( )
= 

CD h cosh k z  + H )FDmax	
z  (  
zFImax 
( )  πCM d sinh (kH  ) 

. 	(3.19) 

It is evident from equation (3.17) that the drag force is most significant nearest to the surface and 

it decreases with increasing depth.   Take as an example, the case of deep water waves with 

typical values for Cd and Cm (1.0 and 2.0 respectively), the ratio of drag and inertial forces as a 

function of depth are 

FDmax 
( z )

=
1 h ekz	 (3.20)

( ) 	 2π dzFImax 

The maximum total force integrated over the height of the cylinder can be determined using 

equations (3.8) and (3.10). Thus total force as a function of time is  

F t  M 
2 ωt( )  = −ρC π d 2 h ω sin  ( )

4	 2k 
sinh 2 kH )

+
kH  (3.21)

 
( 

2 21
2	 D

h ω  4 2  cos ( )+ ρC d 	 ωt cos ( )ωt 
4 k sinh2 (kH  ) 

( )  = −F sin  (ωt ) + F cos  (ωt ) cos  (ωt ) (3.22)F t  Io Do 

Further discussion of Morrison’s equation can be found in Environmental Descriptions pgs. 

6.27a-l. 


