
13.42:

HELPFUL MATLAB PLOTTING COMMANDS

c�A.H. TECHET

MATLAB will be a useful tool to know throughout the course of the semester. The first homework
can be simplified using MATLAB and the first lab will ask each lab group to use MATLAB prior
to the lab session to generate a waveform to study. Throughout the term there may be other
assignments which call for the use of a software package such as MATLAB. The specific use of
MATLAB is not required.

Running MATLAB on the MIT server is quite simple. At a workstation you can use the software
pull-down menus at the top of the screen or at a server prompt type add matlab press return,
then matlab.

There are some common functions that are used frequently in MATLAB. Several of these are
listed below with descriptions of their use. If you are looking for a certain function and want to
know how to use it type help command at the prompt, replacing “command” with the function
name. It is also useful to look at the “Using MATLAB” manual that ships with the PC version of
MATLAB if you have access to one. There will be a copy available at each of the lab sessions in
the Towtank. Mathworks has extensive information on their web site about the functions and using
MATLAB http://www.mathworks.com. If a problem requires complex MATLAB code, a guideline
will be included in the homework. If you choose to use a program other than MATLAB that is fine.

In MATLAB it is simple to create a script that performs a series of commands similar to a C or
FORTRAN code. Edit a file with a ∗.m extension in the working directory. Type commands in order
you wish them performed and save the file. Note: a script is different from a MATLAB function in
that variables defined and calculated in a script are global, but within a function variables are only
local unless passed in and out (help function).

who: lists all variables in the MATLAB workspace. Another option is whos, which is similar
in effect to ‘ls − l’ in UNIX, lists the variables and their size. To look at the contents of a
variable just type the variable name at the MATLAB prompt omitting the semicolon at the
end of a line.

cd dir: changes to the desired directory, where your script is located, unless you include the
working directory in the path you must be in the correct directory to run a function or
script.

path: displays all the directories that MATLAB searches in for the functions called. If your
function is not in one of these directories you must change to that directory before calling a
function.

figure(1): make figure 1 the current plot; future plotting commands will be directed into the
window for figure 1. This is useful when you have multiple figure windows open and want a
script to plot in a window different from the current figure. Call the figure(#) command
before the plot command.

subplot(3,1,2): breaks the current figure window into a three by one array of distinct plotting
regions and sets the current region to be the second of the three. You can change the
current region with something like subplot(3,1,3). Can also type subplot 312 dropping
the brackets and commas. subplot 324 will make a figure with three rows and two columns

1

2 c�A.H. TECHET

of plots (six total), the third number refers to which of the six plots will be made active.
Counting is from left to right, top to bottom.

hold: hold the current contents of the active figure; this means that any subsequent plot
commands will draw on top of whatever is already there rather than starting from scratch.
A second hold command will release the figure. It is also possible to type hold on and
hold off to toggle the hold state.

clf: clears the current figure window. Also removes any hold and/or subplot sectioning. This
does not toggle the hold command– if hold is on it will stay on.

plot(x1, y1, ‘-’, x2, y2, ‘–’, x3, y3, ‘:’): plot three curves defined by the xi and yi vectors,
each with a different line style (in this case, solid, dashed, and dotted). The text arguments
after the y vector for each curve can also be used to define marker style (circle, x, *, etc.)
and curve color. Type help plot for a list of color and marker codes.

legend(‘curve 1’, ‘curve 2’, ‘curve 3’): assign and draw the legend for curves 1 (the solid
line), etc. You can click on the legend with the mouse and move it around once it has been
drawn.

axis([xmin, xmax, ymin, ymax]): change the limits on the plot axes. V = axis will return
the axis limits for the current figure.

xlabel(‘time (s)’): set the label on the x axis of the current graph (and current suplot if ap­
plicable) to the given text. Same holds true for ylabel(‘H (m)’). Certain greek symbols can
be used in plots, such as ω by typing similar commands used in LaTeX. xlabel(‘\ omega’)
for example.

gtext(‘message text’): allows you to place the text given in the argument onto a graph using
the mouse. Helpful for labeling the interesting features of any given plot.

ginput: allows you to click on points in the graph with the mouse. When you hit return you
will leave input mode and the x and y coordinates for the points that you clicked on will
be displayed. To record the values you click type [x, y] = ginput(2); for two values (any
integer number will work).

zoom: toggles the ability to zoom in or out on the current graph. When zooming, clicking on
the left mouse button zooms you in around the point you clicked on; clicking on the right
button zooms you out. zoom on; zoom off.

orient tall: set the orientation of the printed version of the plot to be full page portrait. Other
options are portrait (the default) and landscape.

print -deps filename.eps: send the current figure to the file filename.eps using the current
page orientation. There are other formats you can use– listed under help print.

[p,f] = spectrum(x, 512, 0, [], 200): generate a power spectrum for the data in vector x,
using 512 point FFT’s, with no overlap between windows, the default Hanning window and
given that the sampling rate was 200 Hz. In general increasing the size of your FFTs will
increase the resolution of your spectrum (the number of points for which you actually get
information back); it will not increase the maximum frequency for which you get information
back. That is controlled by the Nyquist frequency which is defined as one-half of your sample
rate. Having FFTs longer than the length of x does not make sense and you should make
them small enough such that several windows will actually slide along x so that you will get
good averaging. It’s traditional (and faster) to use FFT lengths which are a power of two.

semilogy(f, p(:,1)): plot the power spectrum that you just got from spectrum with a loga­
rithmic y axis and a linear x axis. The second argument simply means that you only want
to plot the first column ((:,1) = all rows, first column, (1:100,2) would be first 100 rows,
second column, etc.).

loglog(f, p(:,1)): plot the power spectrum on a log-log scale.
[b,a] = butter(10.0, 50/100): define filter coefficients for a tenth order Butterworth low­

pass filter with cut-off frequency of 50 Hz if the Nyquist rate is 100 Hz.
xf = filtfilt(b, a, x): filter the data in vector x with the filter defined by coefficients b and

a.

3 13.42: HELPFUL MATLAB PLOTTING COMMANDS

help plot: get help on the plot command. Very helpful for getting the many details of plot
and all the other commands that are not discussed here.

%: indicates a comment. All text to the right of this marker is ignored until the next line
break.

;: at the end of a line stops the results from scrolling across the screen. Good for math with
big arrays and matrices.

:

OTHER USEFUL COMMANDS:: Type help command to find out more:

mean, median, std, min, max, sqrt, sort, grid, semilogx, semilogy, sin, cos, tan, acos, asin, atan, log,
log10, exp, load, fread, fwrite, fopen, save

4	 c�A.H. TECHET

TRY RUNNING THESE SAMPLE PROGRAMS

SAMPLE CODE 1

a = 2.5; % Amplitude of sine wave in cm

x = 0 : pi/20 : 2 ∗ pi; % Theta from zero to 2 PI with 40 points between.

y = a ∗ sin(x); % Calculate y = sin(theta).

plot(x, y, ‘r−�); % Plot x vs. y as a red line

xlabel(‘\theta(radians)�);

ylabel(‘y(cm)�);

title(‘sin(\theta)�);

SAMPLE CODE 2

vec1 = 10 : 10 : 200; % Vector 1

vec2 = [2 : 4 : 20 400 : 2 : 440]; % Vector 2

mat1 = [2 : 4 : 20; 400 : 2 : 440]; % Matrix is created using 2 arrays of the

% same length; the semicolon indicates a row break.
y1 = vec1 ∗ vec2�; % Multiply vec1 by transpose of vec2.

% Result is scalar.
y2 = vec1. ∗ vec2;	 % Mult. each entry in vec1 by the entry in vec2 with

% the same index. Vectors must be the same length.
% Result is vector of same length as vec1, vec2.

size(y1) % show that y1 is a 1 x 1 array (a scalar).

size(y2) % returns the vector/matrix dimensions m x n.

length(y2) % returns the vector length

