EXCITING FORCES AMVD HYDEPODLYNAMIC

CoefrFICIENTS

o THERE REMAINS TO DERIVE THE BOUNDRERY
VALVE PRORLEMS LEAPCING TO THE DEFINIT/ION

OF THE EXciTinNG Foeces X, (&) Awnbp
THE IMPEDANCE HYDEOOYNAMIC

COERFICIE TS A{SCoo), By (w); 15:1,34

® TUE STEPS FOLLOWED IN Two DIHEvSIONS
AND THE REATIONS THAT FOLLOW BEXTEND

ALNOST VITH N O CHANGE IN THREE

DM ENSIONS,
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T = A cos (wt-lkx)

= A coes wt | x=o0

- A Re § ety

PLANE PROGRESSIVE WAVES WITH POTE NT/AL
Py ArRE INCIOENT TOWARDS A FIXED 2D
BO00OY . THE CoRRESPONDIN G W AVE
ELEVATION IS PDEFINED ABovE AND HAS

A ZERO PHASE REBEMLATIVE TO X=0O.

ALL OTHER SEAKEEPING QUANTITIES

HAVE A PHASE MEASURED RECATIVE To
THAT OF T AT X=0._
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LET “U( BE THE DIFFRACTION VEBLODATY

POTENTIAL DRDEFRINED A foLtows
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THE ROUNDAZY -VALVE PROBLEM SATISEIED
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AT INFINITY, ‘{’7 REPRESENTS THE WAVES
SCATTERED BY THE BooY WHiICH MusT &

ANTGoING . So AS [X] =00

K2 —t kX

i5A+e XS 4
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wWhere AT AR UNEVOWN COMPLEX
AMPLATY pES

THE SOLUTIO™ OF THE BVP Fop LP_(
DEFINED ABOVE AND SIMIAR PROR LEMS
DERIVED REWOW 1S CARRIED GUT RovTIveLy

(O ITH PANEL HE"\'HODS’ D ISCUSSED LATER .—



Fottow iva THE SOLUTION Foy (p, THe

HYOROOYNAMIC PRESSURE FoLLoOWS FRoMm

THE ULINEAR BERNOULLL ERQRQRUATION =
D
/P: = 37 (¢I+Yj )
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|T ForLLows THAT:

@ X, lw)= fﬁA K (Xr+%7)m, ds
| s
@ X3(w:= p3A ([ (%y+%)m, ds
Sg
WITHY : ke - tkx
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TUE RoLL HOMENUT ABOJT THE CENTER oF

GeAnTY G I35 PEFINED IN AN ANALOGOUS

MANNER

M= ﬁ(;q"‘;)P ds
Sg
T FOltows THAT THE CoMPLEX Row MOMEWNT
BECoMES: |

Se




THE COMHPLEX WAVE ExCITING Forces
Xéa“’) y 4= 1,3, % CAN BE PDECOHPOSED
[V AN OBVIOUS MANNER AS ForLLows:

Fk DIF

%O'Lw) = %J‘ (w) + &(3’&0)

® THE FRovpE-kKRYLOY COMPONENST |S ONLY

A- FONCT(ON OF THE AMRIENT WAVE PSTENT/AL
AND VERY EASY TO EVALVATE

@ THC DIFFRACTION CoMPOoNENT 1S A
FUNCTIlon OF THE DI1FFRACTI(ON POSTENTIAL
AND RERUIRES THE SOLUTIoM OoF A

BOONDARY VALUES PRoBLEM , _

- DiF _
® FURTHER PROPERTIES oF \)\(J- ARE DISZ%SE‘SCD
2. —




ADDED MASS AND DAMPIN G COEFFICIENTS

THE PRINCGIPAL STEPS FOR THE EVAWATION
OF Ajj(w) ARE PRESENTED FOE HEAVE .
THE IDEAS EXTEND TRIVIALLY TO SUR4E

AND ROLL ,—
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DUE TO THE FORCED OSCILLATION OF THE
BoDY WITH DISPCACE MENT $50¢) A FLoip
PISTORRANCE WlLL RESLOUT Lt TH VELOCITY

PorenTiAL

4>3 = fice { P el\wé}
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@® THE NOEMAL COMPONENT oF THE RoDY
VELOQTY [N THE DIRECTION OF THE

UNMUT NORMAL VECTOR y1 DULE TO THe
—

HEAVE VELoUuTY Tl 1s swpiy:
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-
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WHERE 12 IS THE UOIT VECTOR (N PIRECTION &.

® THE ZERO RELATWE NORMAL FLyX CONDITION
ON THE BODY BOUMDARY REQUIRES THAT:
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ExPRESSING 1N COMPLEX FORM , WE DBTAIN:
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ENFORCED ON THE MEAN POSITION OF
THE BoODY BounpaRY PUE TO LINEATRITY. —




DLVE TO THE FORCED OSCILLATION OF THE
BROOY IN HEAVE, THE RESULTING WAVE
DISTURBANCE WiLL REPRESENT OJTLOIN G

WAVES AT INFILNITY

i 4 .
19 A3 kz-tkx+'wt
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Kz +ikx+iwt
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wHere Az ARE THE COMPLEX AMPLITUDES
OF THE WAVES RAQIATED AWAY. For A

SYMMETRIC BopY AND FoR THE WHEAVE MOTION

\/’t;( = 1A3_1°—

THIS COMPLETES THE STATEMENT O F THE
[SOUNDARY VALLUE PROBLEM SATISFIED RBY

'% WHICH IS ALSO SoLvED BY PANEL
METHODS , ___



ASSOMING THAT THE SoLUTIon FOR O3
HAS BEEN CARRIED oUT , THE Hv DRoDYNAM|C
PRESSURE FOLLOWIS AGAIN FRoM RERNOUVLL] :

/Pg: ?B¢3=~ffzefqu)3 L’:}

THE FORCE ACTING ON THE Ropy IN THE
HeAVE DIRECTION FolLtows
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® WHEN STAT/ING NEWTO lu's LAwJ) F-;(f) WAS

ALSO DEFINED IN TERMS OoF THE ANDDED

M ASS AND DAMPING COE FFICUENTS
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A PEFINITION VALID ONCY FoRk HARHMON ¢ MOTIoV,




EXPRESSING IN COMPLEX FOoORM *

Foe)= — e {[‘wz""sg(“’)f_% +iw By Fy ]
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EQuaTING THE TwWO DEFRIMITienNnS 0F i)

AND KEEPING THE COMPLEX TERMS

Z ‘ .
W Azz(w)—1tw B33(w) ——lw? “ L.P3 Nads
| Sa
THIS EQuATion DEFINES THE HEAVE ADDED
MASS AND DAMPING CoEFFICIENTS IN TERMS
OF g , OBTAINED FRoM THE SOLUTION OF

HE FREE-SURFACE BoUNDARY-VALWE PRAOBLEM

NOTING THAT: PB“}’B - "ww3 , on '§8
Tn

WG MAY ALSO USE:
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THIS DEFIN|TION EXTENDS TO ALL oTHER
MOPES OF MOTION TRIVIALLY AND FRo M

TWO TO THREE PIMENSIONS!

>
WHERE TFOoR SURAGE AND HEAVE

on J ) d: 3

AND FoR TH{_—: RoLL MUTION AROVT THE ORIGIN®
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'bTLF: WMy, YM:lX)":‘s[: Z My~ xm,

(VEE;Fy)

ASSUMING THAT \Pi IS AVA|LARLE OnN Sg*
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SYMMETRY ~ RECIPROCITY RELATIONS

(T oot ge SHOWN <THAT:

A«ij () = AJ-LCW)

Rij (w) = B ()
AlonvG THE SAME ULINES (T WILL RE SHOWN
THAT THE CEXCITING FoRceE R<a’ CAwNv f3E

EXPRESSED IN TERMS G F wlbd- CARCOMVENTING

THE SoLuTionN For THE DIFFRACTION IPOTE NUAL.

THE CORE RESVLT NEEDED Folk THE PRoof
OF THE ABOVE PRoOPERTIES IS GREEN'S THM:

;%(\Php" \{/jff_‘}cls O
IXS

[N THE SURFACE WAVE-BODY PRO BLE PEFINEG
THE CLOSED SLURFACE S AS Fouows:
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LeT (PJ- BE RADIATION O0R DIFFRACTION

PCJTE‘)\YFIVALS . OVER THE BouNpARIES S *

wWeE HAVE:
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APPLYING GREEN'S IDENTITY TO ANY PAIR
OF THE RAPLIATION PWEW\ALS—W; ’”\Pa' .

Flw s 2ds =
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HASE1wWD RELATIONS OF EXATING Fofrecs

&(‘;Lwh —iw? fS (CPI+L€7)Y),; ds
Sa |

(WHEBERE THE RADRIATION VELOCETY PUTENTIA L

KPL 1S ENoWN TO SATISEY ¢

DY .
&: zu)“/lb' y ©on §3
om

AND
(6?7,_‘6_5_?;" on Sg
Tn oM )

BotH ; avp ©; SATISFY THE ConNDITIoN oF
NTGOIN & WAVES AT INFN|ITY, BY VIRTUVES f
GREEN'S THM !

THE HASKIND EXPRESSionN FOR THE EXCTIN G FoRce
FOLLowS" )

%, () = -p §§ e ATTRL



COMMENTS ¢

@ THE SYMUETEY OF THE Aji(w), By dw )
M ATRICES APPLIES IN 2D AND 3D . THE
APPLICATION OF GREEN'S THM IN SD IS
VERY SIMILAR USING THE FAR-FIELD
REPRESENTATION FOR THE POTENTIAL ()

A;(9) kz-tkR
. e /
Y; DY, ~ 9/*/'
o = ‘T{’ ~ -k @ +0 (/) R |

WHERE RIS A RADIUS FROM THE BOPY OVT
TO INFIVITY AND THE R /2 DEcay Agises
EroM THE BENERGY CONSERVATION PR M UPLE.
DETAILS OF THE 30 PRooF HAY BE FovnD

INN MEI AND WX L

© THE USE OoF THE HASEWO RELATIONS FOR

THE ExclTING FoRCEs DOES NOoT REQUIRE
THE SowuTioN OF THE PIFFRACTION PROBLEM
“THIS [3 CONVENIENT AND OFTEN HoRE ACCURATE.



© THE HASKIND RE(ATIONS TAKE OTHER
FORMS wiHICH wu,L.Mo‘r RE PRESEWNTED

HERE RUT ARE DETAILED IN W X .
THE ONES THAT ARE vsep IN PRACTICE
REWUTE THE EXCTING FORCER To Tue

DAMPING COEFFICIENTS.

THEY TAKE THE FORM ¢

. [X;]* a  peep
.—-———ZDi BLL = ) Vg = — )
203 \/:7L 20y~ WATER
50: 833" L__‘Xgll — HEAVE
(Axrsvuuerrzm) - 4p9 \/%
RoODIES
Ben = L ]\\(2\2—, SWAY
%93\/3

So kvowrepae oF X (w) ALtows THE
DikEeT EVALUATION 0 F THE DlACONAL
DAMPING COEFFICUENTS . THESE EXPRESSIONS
ARE USESFuLIN DERIWING THEORETIML

RESOLTS (N WAVE-BOPY INTERACTIOoNS To Be
DIlScusSsSEp LATER,



THE TwO-DIMENSIONAL THEORY oFf WAVE-
BODY I NTE RACTIONS I THE FREQU E N Cy

DoMHAIN EXTENDS TO THREE DIMENSIONS

VERY DIRECTLY Wi TH LITTLE D IFFICULTY

THE STATEMENT OF THE & DOF S6A EEEPING
PRoORLEM I[S:

6
Z [ -w‘LCHLi"’ALSX-F ) Bii + c;ﬂEs

1= R
= &(;’ ) L‘:l)"'lé

W HERE :
HLS - BopY INERTIA MATRIX (NCLUuDINCG
' MoMENTS OF INERTIA FOR ROTATI/IONAL-
MHODES . FoR DETAILS REFER TO MY

A“(@: ADOED MASS MATRIX

B,; (w): DAMPING MATR)X

Ci; 2 HYDROSTATIC AND STATIC

INERTIA RESTO R V4 MATRIX,
Fob DETAILS REFER TO MH

X (w): WAVE EXcaITING FORCES AND
Mo MENTS . |



AT Z2eRro SPEED THE DREFINITIONS OF

ThEe ADOED- MASS, DAMPING MATRICES AND
EXCITING FORCES ARE IDENTICAL TO THOSE

N Two DIMENSIOWNS.

THE Bouvvp AZY VALU E- PROBLEMS SATISFIED
BY THE RADIATIOW POTENTIALS Y, )=)--4

AND THE DIFFRAcCTION PoTe NTIAL Lp., AfRRE

AS FoLtow S

FREE- SURFACE ConNDITIOWN

T )
—w Y; +9 Mi_o z=o
2
4= leeoy 7
BopY - BOUNDARY CONDITIONS
> >0~
LP.’:—_\LE._L ) cn SB
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L=2 7 SewAY
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1=¢ 3 RoLL .
'Y)J:
i:—s: ?\TCH . . )
1=6: YAW (XXV’)‘S_*B ) J=¢(-,S,é

AT LARGCE PDISTANCES FRow "THE BODY THE
V ELoCTY POTENTIALS SATISFY THE RADIATION

CONDITICOWN -
(9) kz- kR
A, o

R

LP& (R,8)~
+ O ([/{2'3/2_>
(0 L\ TH lc-g N?g,

TH1S RAOCIATION CoONPITIeN IS ESSE NT/AL
For THE FORMULATION AND SOLUT(on OF

THE BOUNDARY VALUE PROBLEMS For
. LSING PANEL METHODS wHICH ARE
THE S‘T&NDAQDSO’:_ UTion) [ECHN ILUE

AT 2ERD AND FORWARD SPEED .




©® QQUALITATIVE BEHAVIOUR OF THE FORCES,
COEFFIUENTS AND MUTIONS OfF FlLoAT/ING BODIES

Aza(w)
D S
_— N\oglw( (SHJGULAR) (A I
HEAVE | _____”_”___“‘_/ 233 | bovrie
Bopy
P —=>
O
SO T w=e oY
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COMMENTS:

® THE 20D HEANE APDED MASS S SINGULAR AT
LOW FREDUENCIES. 1T IS FInITE IN 3D

® THE 20 HEANE DAMPING COEFFICIENT IS
PECAY(NG TD ZERD LINEARLY (4 2D AND
SUPERULINEARLY 1IN SD. A TWOH- DIMENSIOCWVAL
SECT(en (3 A BETTER WAVEMA KER THAN

A THREE-DIMENSIGN AL O NE




"2‘_A22 [Doo BLE O
BopY

SoPERLINVEAR

® A 20 SECTION OSCILLATING IN SWAY IS
[(ESS BEFFECTWE A WAVE MAKER. AT Low
FREQUENVCIES THAN THE SAME SclTIoN

OSCILLATING IN HEAVE

@® (HE 2ERO- FREWQUENCY LIMIT OF THE
SWAY ADD ED MASS S FINITE AND SIHILAR
TO THE INFINITE FREQUENCY LIMIT OF THE
|+ EAVE ADDED MASS .



ExClTING EOPCES

HEANE A | X5 €2

Zb % 36

#ﬁ w
SHowrT

Lowve WAVES
WAves

S W AN 0 .’Yz./w’}l

p————————

2D 2 %3p

> W

Q@ [N LONG WAVES THE HEAVE EXCI1TINGE PORCE

TENDS Td THE HEAVE RESToORING COEFF)I CIENT
TUIMES THE AMBIENTT WAVE AMPLITUDE

THE FREE SURFACE BREHAVES LIUKE A FLAT
SUVURFACE MovING VP & DownN

® |V LonG WAYES THE SWAY EXaQaTIVG FoRcc

TENDS To 2ERHO . wRooF wiLL ForLLowr

@® |V SHORT GWAVES ALL FoRcE> TEND To 2ZERO,__



PITcH or ROLL EXCITING MOMENT

N,

\ ,Xs"(w)x

)(éw) [
Css kA

>4

o > )

® PVTCH EXCITING MOHENT (SAHE APPLIES To
RoLL) TENDS To ZERO. LONG WAVES HAVE
A SMALL SLoPE WHICH (S PRO PORTI oW AL
TO kA [ WHERE k 'S THE WAVENUMBER

Avo A ts THE WANE AMPLITUDE

® PROVE THAT TO LEADING ORDER FoY=
kA —>O

[Xs(w>} ~ KA Cg¢

wHEre Cge |S THE P1TeH ( Cu,, FoR Rorz)
HYDROSTATIC RESTORING COEFFICLENT .
[NB: VERY (oNG WAVES Look LIKE A FLAT

Gorrace (neunNED(® KAT.



BopoYy MoTions IN REGCULAR WAVES

HeEAvVE
WXz (w)
P ‘
RESONANCE ! S
0 = Css  _ PgAw
M + Az3 M+ Azs(w)

® IV PRINCIPLE THE ABOVE EQUATION IS
NONLINVEAR FoR w. il BE APPROXIHATED

E;Law
A ’ fg/A‘
!
/1 ~ !
!
: .
w* L
Xg(w™
AT RESovANCE: H, = 3 )
I.DJ* 833(&3’()



INVOKING THE RELATION BETWEEN THE
DAMPING COEFFICLENTAND THE EXCITING

Fokzce v 30
- . lxg(uo) , 9
| X - | > VItag
A w L %)%
493V8
= - 2PJ y AT RESOVAWCE
w? [ X3) |

@ THIS COUNTER~INTUITIVE RESOLUT SHOWS THAT
Fog A BODY pNOERKROING A PURE HEAvVE
oscitiaTioN, THE MopuLvs oF THE HEAVE
RESPONSE AT RESONANCE IS INVERSELY
PROPORTIGCNAL TO THE MopPuvLUsoF THE
HEAVE EXCITING FORCE

@ SWATH VESSELS OF THE SoR M —-H- —

MAY BENCFIT FROM THIs PROPERTY

© VISCoUS EFFECTS NOT D|SCUSSED HERE MAY
AFFECT HEAVE RESPONSE AT RESoN ANCE

@ STUDY Af AN EXERCISE THE BEPAVIouROF
THE SWAY RESPONSE,



OFTEN [T IS USEFUL TO ESTIMATE THE
HEAVE AND PITCH RESONANT FREQUENWCIES

IN TEEMS OF THE PRINCGIPAL DIMENSIONS

OF A Bopy.

2D . THEG HEAVE AODED MASS Azz ISOFTEWN
NOT Too FAR FRoM TTS INFINITE

FRELRUENSGY LHIMIT y oR :
~ l
AzsT Agg(ed) =5 (N

TOR A BOX-ULKE SECTIoN WITH BEAM (3

Ano PRAFT T ¢
o | _ L
A33=z?BT‘zH
2 T
(3{5T+§\°BT
lto
W= (.2T>

® DERIWE THE CORRESPOWOING RESULT For Rerl



SD . THE ExTENSION TD A 3D RODY OF

P

GENERALSHAPE IS EASY IN PRINCIPLE

o FoR A SH)P LIkE BopYy wWITH LENGTH
LARGE RECATIVE TO (TS BEAM , 3, wE
MAY APPROXINATE TS SHAPE AS A
BARQRE wiTH LEVGTH L, GeAm B
AND DRAFT T. [N THIS CASE THE
20D ANALYSIS IS VERY ACcurATE

® PRovE THAT THE SAME RESCNANT
TREQULENCY W* IS APPLICABLE To THE
PLTCH M OTleN OF THE BARGE AS welLe.
Sp HEANE X P1TcH RESONATE AT THE
SAHE FrecovenveY . THIS RESLULCT 1S VERY

WELL VERIFIED BY 3D CoHPUTATIONVS

(<Y SIMILAR ARGU MENTS APPLY TO THE RO
MOTIonn OF A SHIP APPRROXt MATED AS

A BoX-UKE BopY. THE KESONANT FREQRUENVLY
FlroM A 20 ANALYSIS IS VERY CLose

TO THE PO RESONANT FREQUENCY FOR

A SLENDER SHIP .




