NEUHANN-KELVIN LINEARIZATION OF U>0

SHIP SEAKEEPING PROBLEM

• LET ⊈(Xo, Yo, Zo, Ł) BE THE TOTAL PUTENTIAL

RELATIVE TO THE INERTIAL COORDINATE SYSTEM

$$X_o = x + Ut$$

• LET Φ(x, y, z,t) BE THE SAME POTENTIAL EXPRESSED RELATIVE TO THE TRANSLATING FRAME.
IT WAS SHOWN BEFORE THAT

$$\frac{dt}{d\Phi} = \left(\frac{9t}{5} - 0\frac{3x}{5}\right) \Phi(\vec{x}, t)$$

WHERE NOW THE TIME DEPENDENCE OF \$\psi\text{WRT}\$

TIME WILL BE OF THE & iwt FORM IN THE

SHIP SEAKEEPING PROBLEM.

THE TOTAL POTENTIAL \$\overline{\Phi}\$ CONSISTS OF

THE SUM OF TWO COMPONENTS IN A

LINEARIZED SETTING

$$\Phi = \Phi + \Phi$$

WHERE \$\overline{\Pi}\$ IS THE VELOCITY POTENTIAL DUE TO THE VESSEL FORWARD TRANSLATION WITH CONSTANT SPEED U AND \$\overline{\Pi}\$ IS THE SEAKEEPING COMPONENT DUE TO VESSEL MOTIONS IN WAVES.

RELATIVE TO THE SHIP FRAME:

$$\overline{\Phi} = \overline{\phi}(x, y, z)$$

$$\overline{\Phi} = \overline{\phi}(x, y, z, t) = \mathbb{R}e\{\varphi(x, y, z)e^{i\omega t}\}$$

WHERE W IS THE ENCOUNTER FREQUENCY AND

$$\varphi = \psi_{I} + \sum_{j=1}^{7} \varphi_{j}$$

WITH 4; , j=1,..., 6 BEIGN THE RADIATION AND 47 BEING THE DIFFRACTION POTENTIALS.

● FREE SURFACE CONDITION !

SHIP- HULL CONDITION!

$$\vec{n} \cdot \nabla \vec{\phi} = \vec{n} \cdot \vec{U} = U \eta_1$$

WHERE $\vec{n} = (n_1, n_2, n_3)$ IS THE UNIT VECTOR POINTING INSIDE THE SHIP HULL

- FAR FROM THE SHIP \$\overline{\pi}\$ REPRESENTS OUTGOING WAVES WHICH ARE KNOWN AS THE KELVIN SHIP WAKE STUDIED EARLIER
- THE SOLUTION FOR \$\overline{\text{\$\pi\$}}\$ BY THE ABOVE FORMULATION KNOWN AS THE NEUNANN-KELVIN PROBLEM AND ITS GENERALIZATIONS DISCUSSED IN THE LITERATURE IS CARRIED OUT BY PANEL METHODS.
- THE PRINCIPAL CUTPUT QUANTITIES OF INTEREST
 IN PRACTICE ARE:

- FREE-SURFACE ELEVATION

- HYDRODYNAMIC PRESSURE (LINEAR)

- HYDRODYNAMIC PRESSURE (TOTAL)

$$P = -P \left(\frac{d\bar{\Phi}}{dt} + \frac{1}{2} \nabla \bar{\Phi} \cdot \nabla \bar{\Phi} + 92 \right)_{\substack{INERTIAL \\ FRAME}}$$

$$= -P \left(-U\bar{\Phi}_{x} + \frac{1}{2} \nabla \bar{\Phi} \cdot \nabla \bar{\Phi} + 92 \right)_{\substack{SHIP \\ FRAME}}$$

IF SW IS THE SHIP WETTED SURFACE DUE TO ITS STEADY FORWARD TRANSLATION ON A FREE SURFACE AND \vec{n} IS THE UNIT NORMAL VECTOR POINTING OUT OF THE FLUID DOMAIN THE SHIP IDEAL-FLUID FORCE IS GIVEN BY

- WE WILL DERIVE BOUNDARY VALUE PROBLEMS
 FOR THE PUTENTIALS & AND & RELATIVE TO
 THE SHIP FIXED FRAME
- THE PRINCIPAL ASSUMPTION UNDERLYING THE ENSUING DERIVATION IS THAT THE SHIP IS SLENDER, THIN OR FLAT OR IN GENERAL STREAMLINED IN THE LONGITUDINAL DIRECTION HORE EXPLICITLY, IF B IS THE SHIP BEAM, TITS DRAFT AND LITS LENGTH WE WILL ASSUME THAT:

$$\frac{B}{L}$$
, $\frac{T}{L} = O(\epsilon)$, $\epsilon < < 1$

WHERE EISTHE SLENDERNESS PARAMETER ASSUMED TO BE SMALL COMPARED TO 1.

THE SHIP SLENDERNESS JUSTIFIES THE

USE OF THE LINEAR FREE-SURFACE CONDITION

IN THE FORWARD-SPEED PROBLEM FOR

A BROAD RANGE OF SPEEDS AND HULL SHAPES

⊕ 4

BOUNDARY-VALUE PROBLEM FOR TIME-HARMONIC VELOCITY PUTENTIAL

FROM THE GALILEAN TRANSFORMATION:

$$\left(\frac{\partial t}{\partial t} - U \frac{\partial x}{\partial t}\right)^2 \phi + 9 \phi_z = 0, \quad z = 0$$

RELATIVE TO THE SHIP FRAME. IN TERMS OF THE COMPLEX POTENTIAL:

$$\varphi = \mathbb{R}e \left\{ \psi e^{i\omega t} \right\}$$

$$\left(i\omega - U \frac{\partial}{\partial x} \right)^{2} \psi + 9 \psi_{z} = 0, \quad z = 0$$

WHERE W IS THE ENCOUNTER FREQUENCY AND UP IS ANY OF THE U; POTENTIALS.

THE ABOVE TIME-HARMONIC NEUMANN-KELVIN

FREE SURFACE CONDITION IS BEING TREATED

BY STATE-OF-THE-ART PANEL METHODS. AN

IMPORTANT SI MPLI FICATION FOR SLENDER

SHIPS AND LARGE VALUES OF W WILL LEAD

TO THE POPULAR STRIP THEORY.

- THE SOLUTION FOR \$\overline{\pmathbb{\qnantbb{\pmathbb{\pmathbb{\pmathbb{\pmathbb{\pmathbb{\qmathbb{\qantbb{\pmathbb{\qnantbb{\qnantbb{\qnantbb{\qnantbb{\qnantbb{\qn
- THE LINEARIZATION OF THE PRESSURE

 AND VESSEL WETTED SURFACE SW ABOUT ITS

 STATIC VALUE IN CALM WATER MUST BE

 CARRIED OUT CAREFULLY! NONLINEAR

 EFFECTS ARE KNOWN TO CONTRIBUTE

 APPRECIABLY TO THE WAVE RESISTANCE
- IF AVAILABLE, A FULLY NONLI NEAR SOLUTION

 OF THE FORWARD-SPEED STEADY SHIP WAVE

 PROBLEM IS PREFERABLE. NUMERICAL ISSUES

 MUST BE CAREFULLY TREATED AND ARE

 THE SUBJECT OF STATE-OF-THE-ART

 RESEARCH
- COUPLING WITH VISCOUS EFFECTS 13 OFTEN STRONG AND IN PORTANT FOR PREDICTING THE TOTAL RESISTANCE OF THE SHIP. _

RELATIVE TO THE SHIP-FIXED COORDINATE SYSTEM THE AMBIENT WAVE ELEVATION OSCILLATES WITH FREQUENCY W.

$$S = -\frac{1}{9} \left(\frac{3}{3t} - 0 \frac{3}{3x} \right) \phi_{z}$$

WHERE:

$$\Phi_{\text{I}} = \text{Re} \left\{ \frac{igA}{\omega_{\text{o}}} e^{kz - ikx\cos\beta - iky\sin\beta + i\omega t} \right\}$$

$$\frac{\partial}{\partial t} = i\omega, \quad \frac{\partial}{\partial x} = -ik\cos\beta$$

$$\frac{\partial}{\partial t} - U \frac{\partial}{\partial x} = i (\omega + k U \cos \beta) = i \omega_0$$

THUS:

WHERE $\pm_j(w)$ IS THE COMPLEX AMPLITUDE OF THE VESSEL MOTION IN MODE-j, A FUNCTION OF THE FRECUENCY OF ENCOUNTER w, KNOWN AS THE RESPONSE A MPLITUDE OPERATOR, RAO.

THE SHIP EQUATIONS OF MUTION FOLLOW AS IN THE U=O CASE USING LINEAR SYSTEM THEORY:

$$\sum_{j=1}^{6} \left[-\omega^{2}(M_{ij} + A_{ij}) + i\omega B_{ij} + C_{ij} \right] \oplus_{j} (\omega)$$

$$= X_{i}(\omega), i=1,...,6$$

WHERE THE HYDRODYNAMIC COEFFICIENTS

Aij(w), Bij (w) AND EXCITING FORCES ARE NOW

FUNCTIONS OF THE ENCOUNER FREQUENCY W

AND OTHER FORWARD-SPEED EFFECTS.

- INERTIA & HYDROSTATIC MATRICES THESAME
 AS IN THE ZERO-SPEED CASE
- WILL DERIVE BYP'S GOVERNING THE COEFFICIENTS

 Aij (ω), βij(ω) AND EXCITING FORCES $X_i(ω)$, __

EXPLICITLY:

$$\omega = \omega_0 - U \frac{\omega_0^2}{g} \cos \beta$$

- : W Z O : BOTH POSITIVE AND NEGATIVE

 VALUES OF W ARE POSSIBLE.

 IN PRACTICE WILL ALWAYS DEAL

 WITH THE ABSOLUTE VALUE OF ω.
- GIVEN THE ABSOLUTE WAVE FREQUENCY WO>O
 THERE EXISTS A UNIQUE W
- GIVEN A POSITIVE ABSOLUTE ENCOUNTER

 FRECEVENCY [W], THERE EXIST POSSIBLY

 MULTIPLE W'S SATISFYING THE ABOVE

 PELATION. MORE DISCUSSION OF THIS TOPIC

 WILL FOLLOW
- ASSUMING SMALLAMPLITUDE MUTIONS THE
 SHIP RESPONSES ARE MODELED AFTER LINEAR
 SYSTEM THEORY. INPUT SIGNAL Ne iwt >
 OUTPUT SIGNAL Ne iwt.

RELATIVE TO THE EARTH-FIXED FRAME THE AMBIENT WAVE VELOCITY POTENTIAL TARES THE FORM:

WHERE IN DEEPWATER: K= Wolfg

IT FOLLOWS THAT!

$$\varphi_{I} = \frac{igA}{\omega_{o}} e^{kz - ikz \cos\beta - iky \sin\beta} \times e^{i(\omega_{o} - \nu k \omega s\beta)} t$$

LET:

BE DEFINED TO BE THE ENCOUNTER FREQUENCY WHICH ACCOUNS FOR THE DOPPLER EFFECT INCLUDED IN THE SECOND TERM IN THE PHS. _

COMMENTS ON N-K FORMULATION:

- THE SHIP IS ASSUMED TO BE STREAMLINED
 IN ORDER TO JUSTIFY THE DECOMPOSITION
 OF THE STEADY & TIME HARMONIC COMPONENTS
- THE VESSEL HOTIONS ARE ASSUMED SHALL AND OF THE SAME ORDER AS THE AMBIENT WAVE AMPLITUDE. TERMS OMITTED ARE OF $\mathcal{O}(A^2)$.
- WHEN TAYLOR EXPANDING THE FREE-SURFACE AND BODY-BOUNDARY CONDITION ABOUT Z=O AND SB RESPECTIVELY, THE STEADY FLOW POTENTIAL $\varphi \simeq 0$.
- FOR SHIPS WITH APPRECIABLE THICKNESS

 A BETTER APPROXIMATION FOR \$\overline{\text{T}} IS THAT

 OF THE DOUBLE-BODY FLOW DISTURBANCE

 SUCH THAT \$\overline{\text{Z}} = 0 on \$Z = 0 AND \$\overline{\text{M}} = Un_1 on \$\overline{\text{S}} B\$

 THIS LEADS TO THE STATE-OF-THE-ART LINEAR

 3D STEADY FLOW AND SEAKEEPING FOR MULATION

 DISCUSSED LATER IN CONNECTION WITH PANEL

 METHODS.
- THE N-K FORMULATION IS THE STARTING POINT OF STRIPTHEORY→